
Luactb
Version 1.4.0

www.iftools.com

Contents

1 Introduction 1
1.1 What can it do? . 2
1.2 Learn more about Lua . 2
1.3 Where can I get the newest luactb 2

2 Dive into luactb 3
2.1 The first steps . 3

Query the available serial ports 4
Open a serial port . 4
Port names in a plattform independent way 5
Send (write) data . 6
Receive (read) data . 7

Read lines . 7
Read pure data . 8

Close a port . 10
2.2 Access a virtual com port . 10
2.3 Handshake . 11
2.4 Toggle RTS and DTR . 12
2.5 Send a break . 12
2.6 Using script files . 12
2.7 Helpful functions . 13
2.8 The SerialPort type . 13

ClearLineState . 14
Close . 15
Flush . 15
GetLine . 16
GetLineState . 16
Open . 17
Read . 17
SendBreak . 18
SetBaudrate . 18
SetLineSate . 19
SetParity . 19
Write . 20

2.9 The base16 Module . 20
decode . 21
encode . 21

2.10 The checksum module . 22
crc16_modbus . 22
lrc . 22

2.11 The ctb module . 23
FindPort . 23
GetPortName . 24

i

CONTENTS

ListPorts . 24
Defined names . 25

2.12 The kb (keyboard) module . 25
getkey . 25

2.13 The time module . 26
pause . 26
ticks . 26

2.14 Further information . 27
2.15 FAQs . 27

How can I check the program version? 27

A ASCII character table 29

B Lua license and copyright 31

ii

1
Introduction

luactb is an extended Lua script interpreter with special
capabilities around serial port communication. It comes with a
ready-to-use non-blocking serial port module as well as other
field-bus relevant functions. All extensions are firmly integrated
parts of luactb - no module loading necessary. It is especially
designed for testing of field-bus applications in the automation
technology.

Imagine you just want to send and read data through a serial port for testing
purposes. A scripting language will offer you a lot of benefits in case of peri-
odical or repetitive tests. luactb therefor combines the facilities of a many-sided
and powerful serial port library1 with the amazing script language of Lua.
Lua provides real 8-bit strings from the beginning which makes the handling of
binary data sequences straightforward. This becomes a big advantage when
dealing with protocols like Modbus and all others where the data payload can
contain also zero bytes.
And luactb offers built-in functions to make the data exchange especially with
field-bus participants based on RS232 or RS422/485 as easy as possible. It
allows you to search and list all available serial ports, accessing virtual serial
ports simply by passing one or more of the USB specific informations (don’t
worry about changing COM port numbers), sending Modbus RTU or ASCII se-
quences with automatically generated checksums and many more.
For this luactb comes with ready to use checksum algorithms (e.g. Modbus
CRC16, LRC but others too), functions for time measuring and a non-blocking
keyboard query method (like kbhit) to realize interactive tests. And the best:
You get all this as a single executable for Linux or Windows with a size less
than 1 MByte.
luactb based on the Lua sources of version 5.3 (see Lua license and copyright)
and is is free available for Windows® and Linux. Lua scripts for luactb have the
same code for both OS families.

1Provided by the ctb library, input ctb on the IFTOOLS download page

1

CHAPTER 1. INTRODUCTION

1.1 What can it do?
So in a short list - what are the points where luactb is particularly helpful. If you
are a field-bus engineer or otherwise face the task to test, develop or program-
ming devices with serial communication abilities, here a small list:

Running test procedures
Simulating protocol telegrams
Collecting device information
Converting measured values
Logging data
Automating repetitive tasks
Generating 9-Bit sequences
Serial Device Reverse-Engineering

1.2 Learn more about Lua
For people who never have heard about Lua.
Lua is one of the fastest scripting languages in the world and getting more and
more popular. Because of it’s small and simple design it is especially easy to
learn. A good start to this amazing language is the official Lua site.

1.3 Where can I get the newest luactb

luactb is free software and available from the IFTOOLS website. For updates
and news take a look at: https://iftools.com/tools/luactb. There are no further
requirements. Just download the archive file, unpack it in any directory and you
are ready to start.

2

http://www.lua.org
https://iftools.com/tools/luactb/index.en.php

2
Dive into luactb

In the following we will introduce luactb with some small examples so you will
get a feeling for the usage and - of course - the chances luactb will offer you for
your own applications. This chapter shows you how to use the Luactb shell to
communicate interactively with a serial device and run scripts automatically.
Later we will go deeper in more special cases.

2.1 The first steps
If you don’t have any experience with Lua, don’t worry!
Lua is one of the fastest scripting languages in the world. Because of its small
and simple design it’s also easy to learn. You will find some links about Lua at
the end of this chapter.

Ok, lets go. luactb is a command line tool, so you have to start first a terminal
or DOS command shell, change to the directory where the program is stored
and input luactb. If you installed luactb by the installer, you even don’t have to
worry about the directory since the installer updated your PATH environment
accordingly. The interpreter greets you with:

You can always exit the interpreter by pressing Ctrl+C.
But I suggest that we stay a little bit longer in the luactb and take a look about
the available serial ports on your PC1.

1If you have a ready installed USB to RS232 converter it would be a good idea, to connect it

3

CHAPTER 2. DIVE INTO LUACTB

Query the available serial ports
For this, just input the following lines (without the leading line numbers, they
serve only as reference for my later explanation):

1 por ts=ctb . L i s t P o r t s ()
2 for i =1 ,# por t s do p r i n t (po r t s [i]) end

Variables in Lua are typeless. The first line calls the ListPort function of the
built-in ctb module and returns all port informations as an array (or in the Lua
way spoken as a table). Module functions are called by the module name, a
dot and the function name.
The second line iterates over all entries in the table and print out each record.
Depending on the existing serial ports you will get something like this:

1 > por t s=ctb . L i s t P o r t s ()
2 > f o r i =1 ,# por t s do p r i n t (po r t s [i]) end
3 COM1 : (Standard po r t types) FREE
4 COM24 0403:6001 FTDI FT3W5E11 FREE

The example above is taken from a Windows computer. On Linux the device
names differ but the rest of the information is the same. The ListPorts function
returns for each port the according device (COM port), the vendor and product
id, the name of the vendor, the serial number and the status of the port. The
information are separated by a tab character.
A few words to the second line: a Lua array (or table) always starts with index
1 (in contrary to C for instance). The ’#’ means the size operator and returns
the count of entries in the table. The following line outputs the number of items
listed in the ports table.

1 p r i n t (# po r t s)

Line 2 iterates over all items in the ports table beginning with the first one (1)
to the last (the available items requested by #ports and printout every item
(serial port) in a line.
An alternative way to iterate over all ports is to use the Lua table iterator
ipairs which returns the pair of the next table index and table content every
turn.

1 for i , v in i p a i r s (c tb . L i s t P o r t s ()) do p r i n t (v) end

Open a serial port
Next we will open COM1 and send the usual ’Hello world’. Linux user replace
the port name with /dev/ttyS0. You can input the following example in your
active interpreter but please note that not every connected device is pleased
with our friendly message.

1 com = S e r i a l P o r t . new ()
2 i f com: Open("COM1" , 115200 , "8N1") > 0 then
3 com: Wr i te (" He l lo wor ld ")
4 end

with your computer now.

4

2.1. THE FIRST STEPS

The code looks reasonably clear at first sight (I hope so). Nevertheless there
are some details which require an explanation.
Before you can access a serial port you must create a handler or object which
represent a serial port of your system. Line 1 creates a new serial port object
and assign it to the variable com.

In the next line we connect the object with a certain port by opening the device,
here COM1. You may notice the colon between the variable and the method
’Open’. The function ’Open’ as well as ’Write’ belong to the SerialPort object.
This belonging is expressed by the colon between the object and function name
and must not mixed up with a module membership.

The open call requires at least two parameters, the name of the serial port de-
vice (COM1) and the baud rate. The third parameter is the optional data format
or protocol. The default is ’8N1’. The name and the protocol must be passed
as a text string. A string in Lua is defined as a character sentence between two
quotation marks.

The Open call returns 1 when successful, and 0 otherwise. Line 3 will only
be executed when the port is open for access. The Write function itself simply
expect a string to send through the serial port. Because Lua strings are allowed
to contain any data you can just as simple send binary data.

Port names in a plattform independent way
Remember that I told the Linux users to use /dev/ttyS0 instead of COM1. As
soon as you try to use the same script on different OS you may encounter a
problem.
Luckily luactb starts from the beginning as a plattform independent tool (this
isn’t really surprising, is it?). That means: All scripts executed by the inter-
preter are the same for Linux and Windows.
Linux names the serial ports as /dev/ttySx or /dev/ttyUSBx whereas
Windows uses the term COMx. In both cases is x the port number, starting
with 0 under Linux and 1 within Windows. (Under Linux the first serial port is
/dev/ttyS0, under Windows COM1).
You can of course - as we have seen - use the system specific naming. But
there is a more elegant way. If you like to open the first serial port (COM1 or
/dev/ttyS0) the built-in ctb module offers you a method to query the right
port name for both OS.

1 com = S e r i a l P o r t . new ()
2 i f com: Open(c tb . GetPortName (1) , 115200 , "8N1") > 0 then
3 then
4 −− do something
5 end

The function GetPortName(portno) returns the ’native’ device name on
both operating systems.

5

CHAPTER 2. DIVE INTO LUACTB

This will work very well with Windows systems but under Linux there is another
pitfall. Linux distinguish between ’normal’ serial ports (named as /dev/ttySx)
and ’virtual’ ports. The latter where created on the fly as soon as you connect
an USB to RS232 converter with your PC. Linux named them as /dev/ttyUSBx.
For now just memorize that GetPortName returns only ’normal’ serial ports un-
der Linux, whereas it always return the relating port within Windows (if it exist).
Later I will show you a more convenient way to access virtual com ports on
both systems without to worry about the right port number.

Send (write) data
In normal case you just want to send a given string or binary data sequence
throughout a serial port and it doesn’t matter how long it takes until all data was
sent (which mostly always is a matter of split seconds).
Assumed you have an already opened com port (as described in the listings
above), the sending of any data will be simply done with:

1 com: Wr i te (" \002 Data between STX and ETX\003 ")

Here we create a text sequence enclosed by a STX (Start of Text) and ETX
(End of Text) control bytes. Both are non-printable characters and therefore
you have to input their decimal value instead. Lua offers a simple way to mix
any binary value with normal ASCII characters. Just input the decimal value of
the desired byte headed by a backslash. The decimal value must always be
entered as a three-digit value. For instance: "\016" means the new line (LF),
"\009" the tab character.
With Lua’s concatenation operator .. it’s especially easy to compose a string
from several parts like:

1 eos = " \ r \ n "
2 com: Wr i te ("some command " . . eos)

eos is a string variable containing a CRLF sequence ("\r\n" is a short form
for "\013\010") which is appended to the sending sequence with the con-
catenation operator.

By default the function Write uses an infinite timeout and always tries to send
the complete given data before it returns. So it might wait or blocks for a longer
time in case the recipient cannot process the sent data as fast as needed.
A blocking behaviour seems fittingly when working interactively, but in other
cases it sometimes is of more importance that a program or script doesn’t
block at all. For instance: When you have to send a lot of data and want to do
other things during the transmission.

1 −− a data sequence of 1000000 hex FF bytes
2 loca l data = s t r i n g . rep (" \ 2 5 5 " , 1000000)
3 loca l l e f t = #data
4 while l e f t > 0 do
5 −− non−block ing , t imeout i s 0s
6 local wr = com: Wri te (data : sub(− l e f t) , 0)
7 −− device doesn ’ t accept more data a t the moment

6

2.1. THE FIRST STEPS

8 i f wr == 0 then t ime . pause (0.1) end
9 −− e r r o r check

10 i f wr < 0 then break end
11 l e f t = l e f t − wr
12 −− do something , e . g . show a progress counter
13 end

By adding a timeout of 0 (seconds) Write now stops as soon as the receiver
doesn’t accept more data and returns with the numbers of written data.
In the example above the number of written data is subtracted from the re-
maining (left) data on line 11. Line 6 uses the left variable to address the
remaining data by indexing it from behind using an negative index.
Negative indexing is one of the great features (beside many others) Lua pro-
vides you with. The reserve indexing starts with -1 (the last byte). Here a short
example:

1 loca l data = " h e l l o wor ld again ! "
2 p r i n t (data : sub (−6)) −−> " again ! "

In many other cases it is often sufficient, just to take a certain send time limit
into account (reflecting the baud rate and data length) and pass that time as a
timeout.

1 com: Wr i te ("some command" , 1 .0)

If the sentence couldn’t be send within that given time it probably won’t even
work with a greater timeout and an appropriate error handling can be consid-
ered when the call returns.

Receive (read) data
Read data seems a trivial issue (at a first glimpse), but before you continue
stop for a moment and answer the following questions.

1 Do you know the expected bytes you have to read?

2 What do you like to do when there isn’t any data at all (no response)?

If you cannot answer to the first question you may read too few data of the re-
sponse or - just as bad - read ahead bytes of a possible second response. And
afterwards it’s difficult to pick the received data apart.
The second case may also block your script when no data is available.

Read lines
luactb provides you (beside a raw read functionality) with an easy method which
should sufficient for the most applications without getting a headache.

1 answer = com: GetLine (" \ r \ n ")

GetLine(delimiter) reads all available data until the given delimiter is
found and returns the whole data including the delimiter. This covers all pro-
tocols with a specified EOS (End Of String). But it’s obvious that the call will

7

CHAPTER 2. DIVE INTO LUACTB

block when the EOS is missed or no data was received at all. A second op-
tional parameter ensures that the reading call returns always after a given - so
called - time out. Here, for instance, after 5 seconds.

1 answer = com: GetLine (" \ r \ n " , 5.0)

In little or simple scripts you may not pay attention about a timeout (and the
relating incomplete or unavailable data). But serious applications requires a
need for a correct error handling. Every time you call the GetLine with a
timeout you have to check the correctness of the delivered data by yourself
because you cannot be sure, that the function returns with a complete response
or just after a timeout expiration.
A simple method would be to check the response for the specified delimiter as
shown in the next example:

1 answer = com: GetLine (" \ r \ n " , 5.0)
2 i f answer : f i n d (" \ r \ n ") then
3 −− c o r r e c t answer
4 else
5 −− a t imeout occurred
6 end

Read pure data
The GetLine function is not suitable for handling raw data without any defined
delimiter or end-of-string character (EOS). luactb therefor provides you with the
more applicable read function, which offers you blocking and non-blocking
reading of data of any length. The simplest call of Read is:

1 answer = com: Read (10)

which just will read the next ten bytes arriving on the serial port. As long as
there isn’t enough data, the function won’t return.
You can limit the waiting time to any value between 0 seconds (non-blocking)
and (by leaving it out as in the example above) infinity. In most cases you will
either use the non-blocking behaviour or a well considered time which fits your
program behaviour best. For instance:

1 loca l t imeout = 0.5
2 com: Wr i te ("Some command sequence ")
3 answer = com: Read (1000 , t imeout)

You want to read the answer of a certain command sent to a device. Since
you know, that the device must respond within a reasonable time (here 0.5
seconds), you can restrict the maximum time to avoid unnecessary time con-
sumption. The count of requested bytes doesn’t matter as long as it is greater
than the expected response (otherwise you might get less data as you want).
Read will always returns either when the number of demanded bytes is reached
or the passed timeout is expired.

Now imagine you want to write all bytes received by a serial port into a file.
You neither know the amount of data nor how long it will take until all bytes are

8

2.1. THE FIRST STEPS

transferred. Since there is not ’end’ condition (EOS) in the data stream (except
for - perhaps - the change in the line states when the sender close its part of
the connection), the only thing you can be sure of it is:
When no data arrives for a certain time, the sender has stopped sending data.
In the meantime you have to read all bytes and write them into a file. For a good
performance the reading should be done without any delays. And it would be
nice to show the user some kind of progress information - wouldn’t it?

Before we start into coding let us see how you can display a counting number
in a single line. It is an often need task and Lua has a simple solution for it.
In the example below we iterate from 1 to 100 and output the counter. A little
delay of 0.1 second helps to show each step.

1 for i =1 ,100 do
2 i o . w r i t e (" \ r " . . i)
3 i o . f l u s h ()
4 t ime . pause (0.1)
5 end

Since the Lua print function always add a new line we cannot use it. But Lua
provides a mighty io module which offers all kind of input/output facilities you
know from other programming languages.
In line 2 we place the output cursor with a carriage return (CR) at the beginning
of the line and append the current counter value with the Lua concatenation
operator. io.write sends the data to the standard output channel.
In normal cases outputs will be cached by the io module (or the OS part of it).
So we must flush the data explicitly (line 3).
Ok, back to our actual purpose. To keep the code simple, we forgo any error
handling (keep in mind, that this is a bad idea...). Here we go:

1 com = S e r i a l P o r t . new ()
2 f i l e = i o . open (" log . b in " , "wb")
3 i f com: Open(" / dev / t tyS0 " , 115200) then
4 −− wai t f o r the f i r s t byte but not longer as 20s
5 local data = com: Read (1 , 20.0)
6 i f #data == 1 then
7 local n = 1
8 f i l e : w r i t e (data)
9 −− now s t a r t reading a l l bytes u n t i l no f u r t h e r a r r i v e s f o r 5s

10 while true do
11 data = com: Read (1000 , 0.0)
12 i f #data == 0 then
13 data = com: Read (1000 , 5.0)
14 i f #data == 0 then break end
15 end
16 i f #data > 0 then
17 f i l e : w r i t e (data)
18 n = n + #data
19 i o . w r i t e (" \ rRead bytes : " . . n)
20 i o . f l u s h ()
21 end
22 end
23 end

9

CHAPTER 2. DIVE INTO LUACTB

24 end

You will notice that we use the Read function three times. At the first call at line
5 the script waits for the arriving of the first byte and gives up after 20 seconds.
As soon as a byte was received (and after writing the byte into the given file)
the program starts a loop reading all available bytes (but not more than 1000).
This time the timeout is set to 0 seconds and every Read call returns immedi-
ately and independent of the amount of received bytes.
A returning value of 0 must be treated in particular. A zero result indicates, that
the port (or better the according driver) ’actually’ has no available bytes. But
this doesn’t mean, that the port has already received all data! By reading out
the port faster than the sender is able to provide data, the Read function will
obviously return zero bytes at times.
In such a case let the sender have some time to catch up as we do in line 13.
When there is still no more data to read, the sender has quit and so can our
script.
There are - of course - better methods to test for a starting and ending trans-
mission. For instance: You can check the DSR and DTR state, but here the
focus was laid on the reading itself.

Close a port
In Lua you don’t have to worry about unused objects. Lua comes with a
garbage collection and frees all variables and objects which are no longer
reachable. This is valid also for a serial port object.
When a script ends all active serial port handlers (objects) are closed automat-
ically. This will also apply for local objects in a function.
Nevertheless sometimes you have to close a port explicitly, i.e. if you like to
reopen it with another protocol.

1 i f com: Open(c tb . GetPortName (1) , 115200 , "8N1") > 0 then
2 −− do something
3 com: Close ()
4 end
5 i f com: Open(c tb . GetPortName (1) , 115200 , "7E1") > 0 then
6 −− do more
7 end

Without com:Close() in line 3 the second opening fails because the port
remains still open.

2.2 Access a virtual com port
USB to RS232 converters are handled by the OS (Linux and Windows) as so
called ’virtual COM ports’. Every time such a converter is connected with the
PC, the OS assigns a prearranged port number to it. Unfortunately the number
varies from PC to PC and also depends on previously connected converters.
You can - of course - specify a certain number for the converter in the property
dialog of the virtual COM port with Windows. Linux users has to add a ’udev’
rule to accomplish the same. And you have to do this on every PC you like to

10

2.3. HANDSHAKE

use with the converter. But both is annoying - isn’t it?

When I introduced the GetPortName(portno) function I promised you a
more convenient way to access a serial port without having to know the relat-
ing COM port number. All it requires is an unique description of the connected
device. Something which differs from device to device. Often only the vendor
name is sufficient (if you only use one device from this supplier), at other times
you need the serial number of the device as an unique characteristic.
The responsible function ctb.FindPort{...} therefore accepts five differ-
ent attributes for the detection:

1 ctb . F indPor t { product = " " , vendor = " " , s e r i a l = " " , p id = " " , v id =" " }

’Empty’ parameters are obsolete. You can simply remove them.
FindPort scans all available ports and returns the first one which fits all given
attributes.
Please note! The function doesn’t distinguish between a free or used port. It
always returns the relating native port name.

Now let us put the function into practise. First of all you need some basic in-
formation about your connected devices. Remember the ctb.ListPorts()

at the beginning of this chapter. It will give you a list of all available serial ports
with their attributes.
Now pick that information that describes the device you like to access and pass
it to the FindPort{} function. In the example below we open a USB to RS232
converter from FTDI with the serial number FT3W5E11:

1 com = S e r i a l P o r t . new ()
2 i f com: Open(c tb . F indPor t { vendor ="FTDI " , s e r i a l ="FT3W5E11" } , 115200)

> 0
3 then
4 −− do something
5 end

This code will work on all supported operating systems, independent of the port
number assigned by the OS.

2.3 Handshake
The data transmission through an opened port runs without handshake unless
you pass the wanted kind of flow control to the Open function. luactb supports
RTS/CTS and XON/XOFF. The following command opens a connection with an
active RTS/CTS handshake.

1 com: Open(c tb . GetPortName (1) , 115200 , ’8N1 ’ , ’ r t s c t s ’)

And here the same with XON/XOFF:

1 com: Open(c tb . GetPortName (1) , 115200 , ’8N1 ’ , ’ xonxof f ’)

The handshake protocol is simply passed as a string to the Open function.

11

CHAPTER 2. DIVE INTO LUACTB

2.4 Toggle RTS and DTR
RTS and DTR are the only control lines you can set. Both lines are intended
to be part of a hardware flow control. Sometimes however they are misused to
drive a special hardware or signaling a certain state independent of the data
transmission lines.
The RTS and DTR line states are switched to a logical 1 state with:

1 com: SetL ineState (c tb .RTS, c tb .DTR)

and set to logical 0 with:

1 com: ClearL ineSta te (c tb .RTS, c tb .DTR)

Both functions accept one or two parameters, the order of the arguments
doesn’t matter. Here a little example which toggles the RTS line of COM1
every 10 milliseconds for twenty times.

1 com = S e r i a l P o r t . new ()
2 i f com: Open(com: GetPortName (1) , 115200) > 0 then
3 for i = 1 , 20 do
4 com: SetL ineState (c tb .RTS)
5 t ime . pause (0.01)
6 com: ClearL ineSta te (c tb .RTS)
7 t ime . pause (0.01)
8 end
9 end

2.5 Send a break
Breaks are often used to reset a communication partner. Basically a is a low
state of the sending line with a duration longer than the time it takes to send a
complete byte. Sending a break is simply done with:

1 com: SendBreak ()

which set the TX line in a low state for about 0.25 seconds2. For a different
break time simply pass the wanted duration time in milliseconds to the function.
For example a duration time of 1.5s:

1 com: SendBreak (1500)

2.6 Using script files
All examples above were directly inputed in the luactb shell. This is nice for
trying little code snippets. But what when you like to run larger Lua scripts or
doesn’t want to input the same code again and again?
luactb supports as almost all interpreters the execution of a Lua script file given
at command line. For instance:3

1 l uac tb . exe y o u r s c r i p t . lua

2The duration is system depending. On Linux the result is in the range of 0.2s...0.3s.
3Linux users - of course - call the luactb shell without an extension.

12

2.7. HELPFUL FUNCTIONS

This command starts the luactb shell and executes the content of the passed
file. (In reality the lua interpreter first complied the script in its internal byte
code and runs it afterwards).
Alternatively you might be interested to execute instructions in a script and then
enter the interactive mode for further tests. Imagine you want to open a serial
port with certain parameters before you start with your own instructions. The
following command does exactly that, assumed the file init.lua encloses
the relevant instructions:

1 l uac tb . exe − i i n i t . lua
2 >

A third variant allows the passing of a short Lua instruction directly via com-
mand line and comes into handy for short commands.

1 l uac tb . exe −e " p r i n t (math . s in (4 5)) "
2 0.85090352453412

For further informations about all supported options call the luactb with the
parameter ’-h’ or ’–help’.

2.7 Helpful functions
luactb hasn’t any debugger skills - and you will rarely need them. As an inter-
preter luactb is able to execute single instructions interactively. And to examine
variables or function results it’s common practice to display them simply with
the print function.
Nevertheless there are situations when you want a more comfortable way to
show the content of data. For instance when you try to inspect the data bytes
in a binary string sequence - a frequent task with serial communication.
Here comes the internal xd(data) function into play. xd displays every passed
data as a hex dump. For instance:

1 > s = " He l lo wor ld \ r \ n "
2 > xd (s)
3 00000000 48 65 6c 6c 6 f 20 77 6 f 72 6c 64 0d 0a

Hel lo wor ld . .

2.8 The SerialPort type
The SerialPort type provides you with a object like interface to access serial
ports. After creating a new instance with:

1 com = S e r i a l P o r t . new ()

you can address a given port simply by using the new variable as a port refer-
ence. The SerialPort type covers all necessary functions, which are listed
below.

13

CHAPTER 2. DIVE INTO LUACTB

Function Description

ClearLineState Set the line state of RTS and/or DTR to logical 0.

Close Closes the assigned serial port.

Flush Forces a write of all pending or still buffered output data.

GetLine Reads a sequence of bytes until a given delimiter (default
is newline) occurs or a given timeout is reached.

GetLineState Returns the logical state of every line coded as a 8 bit
value.

Open Opens the given port with the passed settings.

Read Reads a given number of bytes with an optional timeout
and returns it as a Lua string. Without a passed timeout
the function returns immediately. Otherwise the function
returns when either the given number of data was received
or the timeout was expired.

SendBreak Forces the serial port to send a break signal (logical 0 state
of TxD). The default duration is 250ms, other times can
passed as an optional parameter in milliseconds.

SetBaudrate Changes the current baud rate of an even open port to
another one. Unusual baud rates are allowed but are not
always supported by every UART chip.

SetLineState Set the line state of RTS and/or DTR to logical 1.

SetParity Set the parity bit statically to 0 or 1, e.g to simulate a 9-bit
data value. Please note, that not every UART chip and/or
driver supports this functionality.

Write Writes a given data sequence (Lua string) to the port
and returns the number of really written bytes. Without
a passed timeout the function returns immediately. Other-
wise it returns when either all data was sent or the timeout
was expired.

ClearLineState
Clears the RTS and/or DTR lines by setting them to a logical 0 state.

S e r i a l P o r t . C learL ineSta te (l i s t)

⊗
list : a comma separated list of the two possible line names: ctb.RTS, ctb.DTR

Example

Toggle the RTS line every 1/10s ten times.

1 com = S e r i a l P o r t . new ()
2 i f com: Open("COM1" , 115200) then

14

2.8. THE SERIALPORT TYPE

3 for i = 0 , 10 do
4 com: SetL ineState (c tb .RTS, c tb .DTR)
5 t ime . pause (0.1)
6 com: ClearL ineSta te (c tb .RTS, c tb .DTR)
7 t ime . pause (0.1)
8 end
9 end

Close
Normally ports are closed automatically when the script ends. But there are
situations when you need to close a port immediately.

S e r i a l P o r t . Close ()

Example

1 com = S e r i a l P o r t . new ()
2 com: Open("COM1" , 115200)
3 −− do something
4 com: Wr i te (" He l lo World ! ")
5 com: Close ()

Flush
All data written to a serial port is normally buffered by the OS. If a serial port
is closed before the whole data was sent by the serial port device, the data
may got lost. To make sure, that all data is really output, call Flush. But
please note! This function may block for a time depending on the size of the
still buffered data.

r e s u l t S e r i a l P o r t . Flush ()

= result : True, if the flush was successful, false otherwise.

Example

1 com = S e r i a l P o r t . new ()
2 i f com: Open("COM1" , 115200) then
3 hugedata = s t r i n g . rep (" \ 2 5 5 " , 100000)
4 com: Wr i te (hugedata)
5 com: Flush ()
6 end

15

CHAPTER 2. DIVE INTO LUACTB

GetLine
Reads data bytes until a passed delimiter (or EOS sequence) was received.

l i n e = S e r i a l P o r t . GetLine (delim , t imeout)⊙
delim : The delimiter passed as a Lua string. Default is the newline character.
Allowed is any byte sequence, including the nul (hex $00) character.⊙
timeout : The default timeout is infinite. The function returns either when a
data sequence ending with the given delimiter was received or the timeout in
seconds was expired.

= line : The returning string includes the delimiter only when the operation was
complete. In case of an expired timeout the delimiter will be missed.

Example

1 com = S e r i a l P o r t . new ()
2 com: Open("COM1" , 115200)
3 −− wa i t i ng max . 0.5 s f o r a sequence ending wi th CRLF
4 del im = " \ r \ n "
5 l i n e = com: GetLine (delim , 0.5)
6 i f l i n e : f i n d (del im) >= 1 then
7 −− ok
8 end

GetLineState
Returns the current state of all modem control lines.

l i n e s t a t e = S e r i a l P o r t . GetLineState ()

= linestate : The line states are returned as a 9 bit number. Every line state is
represented by a single bit:
RTS=0x004, DTR=0x002, CTS=0x020, DSR=0x100, DCD=0x040, RI=0x080

Example

1 com = S e r i a l P o r t . new ()
2 i f com: Open(c tb . GetPortName (1) , 115200) then
3 while kb . getkey () == n i l do
4 local l i n e s = s t r i n g . format (" \ r%02X" , com: GetLineState ())
5 i o . w r i t e (l i n e s)
6 i o . f l u s h ()
7 −− r e f r esh the l i n e s ta te each 1/10 second
8 t ime . pause (0.1)
9 end

10 end

16

2.8. THE SERIALPORT TYPE

Open
Opens a serial port with the given name, baudrate, data format and flow con-
trol.

r e s u l t = S e r i a l P o r t . Open(portname , baudrate , dataformat , f l o w c o n t r o l)

⊗
portname : The portname passed as a Lua string like ’COM1’ or ’/dev/ttyS0’.⊗
baudrate : The wanted baudrate as a number. The supported baud rates de-
pend on the device/driver.⊙
dataformat : A string representing the dataformat. The default value is ’8N1’.
Aaccepted data formats are:
A length from 5...8, a parity passed as ’N’, ’E’ ’O’, ’M’, ’S’ (None, Even, Odd,
Mark, Space) and 1 or 2 stop bits.⊙
flowcontrol : A Lua string describing the flow-control. Default is no flow-control,
but you can pass a ’rtscts’ or ’xonxoff’ string to activate on of them.

= result : Returns true, when the open call was successful, false otherwise.

Example

1 com = S e r i a l P o r t . new ()
2 i f (com: Open("COM1" , 115200 , "8N1")
3 −− do something
4 com: Wr i te (" He l lo World ! ")
5 end

Read
Reads data from the serial port. The function returns only when all given bytes
were read or the passed timeout in seconds was expired.

data = S e r i a l P o r t . Read (count , t imeout)

⊗
count : Count of bytes you want to read.⊙
timeout : An optional timeout in seconds. The default is infinite.

= data : The received data as a Lua string. Remember that a Lua string can
contain every byte value.

Example

1 com = S e r i a l P o r t . new ()
2 i f com: Open("COM1" , 115200) then
3 −− do something
4 com: Wr i te ("Some reques t ing command")
5 −− read the answer

17

CHAPTER 2. DIVE INTO LUACTB

6 local answer = com: Read (100 , 0.5)
7 i f #answer == 0 then
8 p r i n t ("No response ! ")
9 end

10 com: Close ()
11 end

SendBreak
Sends a break signal for an optional time.

S e r i a l P o r t . SendBreak (du ra t i on)

⊗
duration : The default duration for a break is 250 milliseconds. You can pass
another duration in milliseconds. The resolution depends of your OS.

Example

1 com = S e r i a l P o r t . new ()
2 i f com: Open("COM1" , 115200) then
3 −− send a break f o r 1s
4 com: SendBreak (1000)
5 com: Close ()

SetBaudrate
Changes the baudrate of an current opened port. Normally you pass the
wanted baudrate when you open the port. But sometimes it is of interest to
manipulate the actual rate, e.g. for testing purposes.
Please note that the change only affects the byte still pending.

S e r i a l P o r t . SetBaudrate (baudrate)

⊗
baudrate : The new baudrate as a number.

Example

1 com = S e r i a l P o r t . new ()
2 i f com: Open("COM1" , baudrate) then
3 baudrates = { 300 , 600 , 1200 , 2400 , 4800 , 9600 , 19200 ,
4 38400 , 57600 , 115200 , 230400 , 460800 }
5 for i = 1 , #baudrates do
6 com: SetBaudrate (baudrates [i])
7 t ime . pause (0.1)
8 com: Wr i te (" This i s a baudrate t e s t ! ")
9 end

10 end

18

2.8. THE SERIALPORT TYPE

SetLineSate
Changes the line state of the RTS and/or DTR line.

S e r i a l P o r t . SetL ineState (l i s t)

⊗
list : a comma separated list of the two possible line names: ctb.RTS, ctb.DTR

Example

Toggle the RTS line every 1/10s ten times.

1 \ begin { luacode }
2 \ begin { l s t l i s t i n g }
3 com = S e r i a l P o r t . new ()
4 i f com: Open("COM1" , 115200) then
5 for i = 0 , 10 do
6 com: SetL ineState (c tb .RTS, c tb .DTR)
7 t ime . pause (0.1)
8 com: ClearL ineSta te (c tb .RTS, c tb .DTR)
9 t ime . pause (0.1)

10 end
11 end

SetParity
Set the parity for the next byte to mark or space.
Please note! This function is not always supported by every device and/or
driver.

S e r i a l P o r t . Se tPa r i t y (s t a t e)

⊗
state : The new parity state. True means a logic high state, false a logic low
state.

Example

Simulating a 9-bit address in a multi-drop protocol sequence.

1 com = S e r i a l P o r t . new ()
2 i f com: Open("COM1" , 115200) then
3 −− the p a r i t y used as the n in th b i t
4 com: Se tPa r i t y (1)
5 t ime . pause (0.1)
6 −− the f i r s t byte i s the 9−b i t address (here 0x101)
7 com: Wr i te (" \ 001 ")
8 com: Se tPa r i t y (0)
9 t ime . pause (0.1)

10 com: Wr i te ("Some data ")
11 t ime . pause (0.1)
12 end

19

CHAPTER 2. DIVE INTO LUACTB

Write
Writes the given data to the serial port. The function will block until all data is
written or the timeout is expired. The default timeout is infinite.

w r i t t e n = S e r i a l P o r t . Wr i te (data , t imeout)

⊗
data : The data passed as a Lua string.⊙
timeout : An optional timeout value in seconds. Default is infinite and the
function call will not return until all data are sent.

= written : The number of written bytes. By using a timeout the number can be
less than the passed data. A negative result is caused by an error.

Example

1 com = S e r i a l P o r t . new ()
2 i f com: Open(c tb . GetPortName (1) , 115200) then
3 local data = s t r i n g . rep (" \ 2 5 5 " , 10000)
4 local l e f t = #data
5 while l e f t > 0 do
6 −− non−block ing , t imeout i s 0s
7 local wr = com: Wri te (data : sub(− l e f t) , 0)
8 −− e r r o r check
9 i f wr < 0 then

10 p r i n t (" E r ro r ! ")
11 break
12 end
13 l e f t = l e f t − wr
14 −− do something , e . g . show a progress counter
15 i o . w r i t e (" \ rRemaining bytes : " . . l e f t)
16 i o . f l u s h ()
17 end
18 end
19 com: Flush ()
20 p r i n t (" \ nComplete ! \ n ")

2.9 The base16 Module
A lot of protocols use a base16 encoding when transferring the data payload.
You may have seen such a thing before. Data sequences, which always look
like a ASCII string containing only the characters ’0’...’9’ and ’A’...’F’. Modbus
ASCII for instance is one of them.
Encoding the data in a Base16 format let you choose any other character as
a telegram delimiter and makes it easy to separate the single telegrams. The
disadvantage: It increases the data volume for twice.
Despite of the advantages and drawbacks is base16 an often used coding stan-
dard and luactb offers you an already integrated module to do the job.

20

2.9. THE BASE16 MODULE

Function Description

decode Decodes a given Lua string containing a valid Base16 se-
quence and return the result as a Lua string.

encode Encodes a given Lua string and returns a Lua string con-
taining the Base16 sequence.

decode
Converts a Lua string covering a valid base16 sequence into its binary repre-
sentation. The decoding stops with the first invalid character or when the string
end was reached. In case of an odd sequence length, the last character will be
ignored.

r e s u l t = base16 . decode (sequence)

⊗
sequence : A valid base16 sequence passed as a Lua string.

= data : The binary representation of the given base16 sentence. Without an
error the resulting string length must exactly be half of the passed sequence.

Example

Converting a base16 sequence into its binary equivalent.

1 b16 = "68656C6C6F20776F726C64"
2 b in = base16 . decode (b16)
3 i f #b in * 2 ~= #b16 then
4 p r i n t (" E r ro r ! "
5 else
6 p r i n t (b in) −−> " h e l l o wor ld "
7 end

encode
Converts a given Lua string into a base16 sequence. Since all bytes in a Lua
string can be represented as two base16 characters, the function will never
fails.

r e s u l t = base16 . encode (sequence)

⊗
sequence : Any Lua string.

= data : The base16 representation of the given sequence as a Lua string.

Example

Converting a Lua string to its base16 equivalent.

1 p r i n t (base16 . encode (" h e l l o wor ld \ r \ n "))

21

CHAPTER 2. DIVE INTO LUACTB

2.10 The checksum module
luactb provides you with an already integrated checksum module supporting a
checksum generator for Modbus ASCII (LRC) and Modbus RTU (CRC16). All
checksum functions requires a Lua string to calculate the checksum from and
return the result as a number.

Function Description

crc16_modbus Calculates a CRC16 checksum with the crc16 polynom
used by the Modbus RTU protocol.

lrc Calculates the LRC checksum used by the Modbus ASCII
protocol.

crc16_modbus
Calculates the Modbus CRC16 checksum (Cyclical Redundany Checking) of
the given Lua string.

checksum = checksum . crc16_modbus (sequence)

⊗
sequence : A Lua string representing the data sequence.

= checksum : The 16 Bit checksum result.

Example

Calculate the CRC16 checksum of the given string.

1 checksum = checksum . crc16_modbus (" He l lo wor ld ")

lrc
Calculates the LRC checksum (Longitudinal Redundany Checksum) of the
given Lua string.

checksum = checksum . l r c (sequence)

⊗
sequence : A Lua string representing the data sequence.

= checksum : The 8 Bit checksum result.

Example

Calculate the LRC checksum of the given string.

1 checksum = checksum . l r c (" He l lo wor ld ")

22

2.11. THE CTB MODULE

2.11 The ctb module
The ctb (communication tool box) module covers several helpful functions
which are not assigned to a single serial port (like the SerialPort module or
class). It provides you with functions to list all available ports, and to find a
port by passing information like the serial number, vendor or product ID. It also
defines name qualifiers for the modem control lines.

Function Description

FindPort Queries for a port which matches all specified search pa-
rameters and returns the name of the first found device or
nil otherwise.

GetPortName Returns the standard port name of the given number.

ListPorts Lists all available ports including hardware information and
state (used or free).

Defined names Not a function but a list of predefined names for the modem
control lines as used in some SerialPort functions.

FindPort
FindPort looks for a serial port which matches the given search criteria. The
function accepts beside a serial number, vendor and product ID also the pro-
ducer name and a product name.
The arguments are all optional and are passed as so called named parameter
to make the call preferably understandable. In case of a hit the device name
(COMx or /dev/tty...) is returned, nil otherwise.

devname = ctb . F indPor t { vendor = " " , s e r i a l = " " , v id = " " , p id = " " }⊙
vendor : The vendor or producer name as a Lua string. E.g. "FTDI".⊙
serial : The serial number of the device as a Lua string. E.g. "FT3W5E11".⊙
vid : The vendor ID (especially used by USB to serial port converters. The
ID is always a 4-digit hex number and must passed as a Lua string with only
lowercase letters. For instance: The Profilic vendor ID is given as "067b".⊙
pid : The product ID. Like the vid the ID must passed as a 4-digit hex number
sting in lowercase letters. E.g. "2303" for the Profilic PL2303.

= devname : The device name, nil otherwise.

Example

Open the FTDI USB to RS232 converter with the serial number FT3W5E11

1 com = S e r i a l P o r t . new ()
2 i f com: Open(c tb . F indPor t { s e r i a l ="FT3W5E11" } , 115200 , "8N1") then
3 com: Wr i te (" This data i s on ly for the given device ! ")
4 end

23

CHAPTER 2. DIVE INTO LUACTB

GetPortName
This function requires a positive integer number and returns the according se-
rial port name given by the OS and independent of an existing port. Under
Windows the result is "COMx" where x is the given number. Under Linux the
function returns "/dev/ttySx" where x is the passed number - 1.
Please note!
Since Linux handles USB to Serial Port devices differently, GetPortName
works only for standard ports named as /dev/ttySx.

devname = ctb . GetPortName (number)

⊗
number : A valid port number starting from 1.

= devname : The device name, nil in case of an invalid parameter.

Example

Open the first COM port (COM1 on Windows or /dev/ttyS0 on Linux)

1 com = S e r i a l P o r t . new ()
2 i f com: Open(c tb . GetPortName (1) , 115200 , "8N1") then
3 com: Wr i te (" This data i s on ly for COM1 or dev / t tyS0 ! ")
4 end

ListPorts
With ListPorts you can retrieve information about all serial ports actually
connected with or installed in your PC. This includes information about the
vendor (manufacturer), the vendor and product ID of USB devices, the serial
number, and optional driver name and version.
The result is a table (or array) or strings. Every string contains the information
of a single port separated by a tab in the following order:

OS device file name (like COM1 or /dev/ttyS0)

vid:pid (vendor and product ID separated by a colon)

vendor name

serial number

state (used or free)

driver name (optional)

driver version (optional)

A typical output may look like this:
/dev/ttyUSB 10403:6001 FTDI FT3W5E11 FREE

por ts = ctb . L i s t P o r t s (’ showDrivers ’)

24

2.12. THE KB (KEYBOARD) MODULE

⊙
showDrivers : By passing the optional string ’showDrivers’ additional driver
information are listed too.

= devname : A Lua table of strings. The length (size) of the table indicates the
count of found serial ports.

Example

List all serial ports include driver information

1 por t s = ctb . L i s t P o r t s (’ showDriver ’)
2 for i =1 ,# por t s do
3 p r i n t (po r t s [i])
4 end

Defined names
The following predefined names can be used to check the result of the Serial-
Port function GetLineState or to pass a certain line argument to ClearLineState
or SetLineState. For more information see the description of these functions.

ctb.DTR

ctb.RTS

ctb.CTS

ctb.DCD

ctb.RI

ctb.DSR

2.12 The kb (keyboard) module
The kb module covers additional functions for handling keyboard inputs which
are not part of Lua or which are are difficult to realize in a platform independent
way. Actually it contains only one function to check if a key was pressed without
blocking the program flow.

Function Description

getkey Checks, if any key was pressed and returns the key code
or nil otherwise.

getkey
Unlike the standard input functions getkey doesn’t wait for any key. It just
checks if a key or combination of keys is actually pressed and returns the key
code or nil. This function becomes especially convenient if you want to check
for a abort key in a loop.

keycode = kb . getkey ()

25

CHAPTER 2. DIVE INTO LUACTB

= keycode : The according keycode or character when a key was pressed, nil
otherwise.

Example

Run a loop until the user hits the ’q’ key.

1 p r i n t (" Press ’ q ’ to abor t loop ")
2 while true do
3 key = kb . getkey ()
4 i f key == s t r i n g . byte (’ q ’) then break end
5 end

2.13 The time module

Function Description

pause Pauses the execution of the script for the given time of sec-
onds with milliseconds resolution.

ticks Returns the number of milliseconds since start of the
OS (Windows) respectively the start of the Unix epoch
(1.1.1970).

pause
Pauses the execution of the script for the given time of seconds. The current
process (running the Lua interpreter) will ’sleep’ and doesn’t consume any CPU
time, until the pause time was expired. The time resolution is in milliseconds.

t ime . pause (seconds)⊗
seconds : Pauses the program for the given time.

Example

Send a sequence every 1/2 second

1 while not kb . getkey () do
2 p r i n t (os . date ())
3 t ime . pause (0.5)
4 end

ticks
Gives you the number of milliseconds since start of the OS (Windows) respec-
tively the start of the Unix epoch (1.1.1970). Lua comes with its own os.time

function but with a resolution of one second only. The time.ticks function
however allows a time measuring in milliseconds in a very simple way.

26

2.14. FURTHER INFORMATION

mi l l i seconds = t ime . t i c k s ()

= milliseconds : The current number of milliseconds since start of the internal
millisecond timer.

Example

Meters the transmission of 10000 bytes

1 com = S e r i a l P o r t . new ()
2 i f com: Open(c tb . GetPortName (1) , 115200) then
3 local t0 = t ime . t i c k s ()
4 com: Wr i te (s t r i n g . rep (" \ 2 5 5 " , 10000))
5 com: Flush ()
6 p r i n t (t ime . t i c k s () − t0)
7 end

2.14 Further information
This chapter can’t replace any good introduction to Lua. It only covers the nec-
essary information you need to undertake the first steps with luactb.
It also can give you a small outlook of all the language features Lua comes with.
For more information about Lua please visit the Lua website at http://www.lua.org.
A very good tutorial is available at http://lua-users.org/wiki/TutorialDirectory too.

2.15 FAQs
How can I check the program version?
You can query the program version with the function version. The result is a
string containing the MAJOR, MINOR and RELEASE numbers. For instance:

1 p r i n t (vers ion ()) −−> re tu rns something l i k e 1 .4 .0

27

http://www.lua.org
http://lua-users.org/wiki/TutorialDirectory

CHAPTER 2. DIVE INTO LUACTB

28

A
ASCII character table

ASCII (American Standard Code for Information Interchange) is
a form for the character coding, which, coming from teletype
machines, now is established as the standard code for character
representation.

The first 32 characters of the ASCII code (hex 00 to 1F) are non printable signs,
reserved for control purposes. The main control characters are line feed or car-
riage return. They are used with devices which need the ASCII code for control
purposes as printer or terminals. Their definiton is caused for historic reasons.

Code hex 20 is the blank and hex 7F is a special character which is used for
deleting.

Code ...0 ...1 ...2 ...3 ...4 ...5 ...6 ...7 ...8 ...9 ...A ...B ...C ...D ...E ...F

0... NUL SOH STX ETX EOT ENQ ACK BEK BS HT LF VT FF CR SO SI

1... DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2... SP ! " # $ % & ’ () * + , - . /

3... 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4... @ A B C D E F G H I J K L M N O

5... P Q R S T U V W X Y Z [\] ∧ _

6... ‘ a b c d e f g h i j k l m n o

7... p q r s t u v w x y z { | } ∼ DEL

The upper table regards only 7 bits per byte, the first 128 characters. Extentions
of the ASCII code use the next 128 characters for national language codings or
graphical signs. They are very different in usage. So we will limit the description
to the standard 7 bit version.

29

APPENDIX A. ASCII CHARACTER TABLE

30

B
Lua license and copyright

Lua is licensed under the terms of the MIT license reproduced below. This
means that Lua is free software and can be used for both academic and com-
mercial purposes at absolutely no cost.

For details and rationale, see http://www.lua.org/license.html.
Copyright (C) 1994-2016 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED AS IS, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-
INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

31

http://www.lua.org/license.html

APPENDIX B. LUA LICENSE AND COPYRIGHT

32

	Introduction
	What can it do?
	Learn more about Lua
	Where can I get the newest luactb

	Dive into luactb
	The first steps
	Query the available serial ports
	Open a serial port
	Port names in a plattform independent way
	Send (write) data
	Receive (read) data
	Read lines
	Read pure data

	Close a port

	Access a virtual com port
	Handshake
	Toggle RTS and DTR
	Send a break
	Using script files
	Helpful functions
	The SerialPort type
	ClearLineState
	Close
	Flush
	GetLine
	GetLineState
	Open
	Read
	SendBreak
	SetBaudrate
	SetLineSate
	SetParity
	Write

	The base16 Module
	decode
	encode

	The checksum module
	crc16_modbus
	lrc

	The ctb module
	FindPort
	GetPortName
	ListPorts
	Defined names

	The kb (keyboard) module
	getkey

	The time module
	pause
	ticks

	Further information
	FAQs
	How can I check the program version?

	ASCII character table
	Lua license and copyright

