
CleverTerm
Version 2.4.4

www.iftools.com

Contents

1 Introduction 1

2 Operating 3
2.1 Start a communication . 4

Setup a serial port . 4
Start and stop the connection 5

2.2 Send data sequences . 6
Enter sending data . 6
Select an EOS . 7
Line repetition . 8
Checksums . 8
Cyclic transmissions . 8
Send data via individual dialogs 9

2.3 The data reception window . 10
The Hexdata View . 10
The Telegram View . 10

2.4 The device status window . 11
2.5 File transfer . 12
2.6 Save your settings . 12
2.7 Save received data . 12
2.8 Short keys . 13

3 Lua dialogs 15
3.1 How it works . 15
3.2 The dialog framework . 16
3.3 Add widgets elements to your dialog 17
3.4 Dialog element interaction . 19

Accessing individual elements by name 19
Defining element action handlers 20

3.5 More positioning and interaction 21
Advanced callbacks . 23

3.6 Create a new dialog . 23
How CleverTerm manages your dialogs 24

3.7 Supported Dialog elements or widgets 24
Named parameters . 24
Common widget parameters . 25
Button . 26
CheckBox . 26
Choice . 27
Label . 28
Line . 28
RadioBox . 29
Spacer . 30

i

CONTENTS

SpinCtrl . 30
Table . 31
TextCtrl . 32

3.8 Functions dealing with widget elements 33
Enable . 33
GetPosition . 34
GetValue . 35
IsEnabled . 35
SetValue . 35
SetDialogSize . 36

4 The editor 37
4.1 Interactive coding . 38
4.2 Find . 38
4.3 Find and replace . 38
4.4 Code folding . 39
4.5 Editor short keys . 39

A ASCII character table 41

ii

1
Introduction

CleverTerm is a program for communication through serial ports like
RS232, RS422, RS485. It is especially designed for testing of
field-bus applications in the automation technology.

Even though CleverTerm is called a terminal program (it sends inputs to a con-
nected device and displays the answers) it should not be mixed up with pro-
grams like HyperTerm or minicom.

The usage for the CleverTerm is more in the field of automation and field-bus
applications. Wherever devices exchange data over an asynchronous serial
connection/bus - the success of the communication depends on the correct
building of the sent telegrams and data frames. This requires an exact knowl-
edge about the used communication protocol (for instance Modbus ASCII/RTU
or others). But dealing with the right protocol sequence can give you a lot of
trouble.
Sometimes the operating manuals of the devices regarding the provided inter-
face commands are very short or even incorrect. Also the understanding of the
underlying protocol often leaves room for misunderstanding simply caused by
a lack of examples. At this point there is nothing else left than to test the single
commands manually.

Everyone who ever tried to send valid telegrams for a certain field-bus - or in
general any communication protocol - knows the difficulties in doing so. These
are among others: the input of binary data, the calculation of the correct check
sum and above all: The reproduction of a valid telegram content.
The usual terminal programs only offer rudimentary possibilities to edit, correct
and repeat such extensive command sequences.

That’s where CleverTerm comes into play. CleverTerm provides you with:

No loss of data by a thread-based, GUI independent device access

Various input modes to handle also binary data sequences

Comfortable editing of data sequences before sending

1

CHAPTER 1. INTRODUCTION

Input history and easy repeat/modify of former sequences

Simultaneous data display in hex and telegram view

Auto-repeat of data sequences in adjustable times

Built-in check sum generation for Modbus ASCII and RTU

A port/device selector let you choose your devices by name

Extendable with individual send/telegram apps scripted in Lua

A full-featured Lua script editor for interactive scripting

Reporting frame, parity, break and overrun errors

Display of all RS232 control line states

Toggle of RTS/CTS, sending breaks

Support of non-usual baud rates

CleverTerm is available for Windows R© and Linux.

2

2
Operating

Easy sending of data and commands to the connected device
and a visualization of the received answer at the same time
allows a clear focus on the essential.

Unlike other terminal programs CleverTerm keeps the sent and received data
strictly apart in separated windows. This gives you the advantage that your
input sequences are not always interrupted by incoming data and both trans-
missions are not mixed up in a complete mess.

For this the CleverTerm program window is clearly divided in three main parts:

3

CHAPTER 2. OPERATING

The receive window shows the data received from the connected device. It is
split into a variable hex and telegram view.
In the transmission (send) window the user enters the data he wants to send to
the device. It includes additional controls to change the input format and data
composition.
The device (line) status window with line toggle controls and error display.

The toolbar is - as usual - on top of the program window. But you will notice
that there is a port selector unlike all you may have seen so far.

2.1 Start a communication
The first thing you have to do when starting a communication with a connected
serial device is to select the right serial port. Sounds not particularly difficult,
but imagine you have several serial device connected with your PC (e.g. sev-
eral USB to RS232/RS485 converters).

Normally you will see a list of /dev/ttyUSB... (Linux)
or COM... (Windows). Every item represents a cer-
tain device, but which is which? A displayed COM19 or
/dev/ttyUSB7 is not very informative - isn’t it?
The CleverTerm port selector takes a new approach. He
gathers all available information about the existing se-

rial ports and checks whether each one is occupied by other programs or free.
Used ports are shown (it’s good to know) but are not selectable.
Every port is displayed with it’s port name and (in case of an USB converter)
also with product name, vendor and serial number.
The port information are updated whenever you click the port selector. In case
you add a new USB to serial converter to your PC, the device will appear au-
tomatically in the selection list. If you remove a converter from your PC it will
disappear from the list.
Since CleverTerm recognizes removable ports (USB to serial converters) by their
serial number, even a converter plugged into another USB socket will remain
the same regardless if it becomes another port number.

Setup a serial port
CleverTerm treats the port settings for every serial device separated from each
other. That means: You can set a baud rate of 115200 for your first COM port
and a different setup for that special USB to Serial converter. Every adjustment
is bind to the according port and will be restored automatically when choosing
that port again.
Furthermore: You can give every device or port an individual name, like ’My
Device’ or ’Blue Converter’.
All your settings are stored in a default configuration file and can be saved as
an individual CleverTerm project file for later use.

4

2.1. START A COMMUNICATION

After you have selected the wanted port, click the ’Set’ button on the right to
adjust the necessary serial port parameters.

Serial port parameters
Baudrate : CleverTerm supports all baud rates in the range from 1 Baud to
1000000 Baud and the more special rates of 1.5 Mbps, 2 Mbps and 3 Mbps
(often used by Profibus). The standard baud rates are selectable from a pre-
defined list by clicking the down arrow on the right. Non-standard rates can be
input directly by clicking into the baud rate field and using the backspace and
numeric keys to overwrite the value with a special one.
Please note, that not all baud rates are supported by every hardware. This
concerns in particular non-standard rates. USB converters with support of non-
standard rates are the IFTOOLS USB232CONV, ISO232, ISO485 and ISO485-
BOX. Latter comes with support of the higher rates of 1.5 Mbps, 2 Mbps and 3
Mbps.

Databits : Number of the bits which are used for one character. CleverTerm
supports word length from 5 to 8 bits.

Parity : Beside the common parity settings none, even, odd parity CleverTerm
also allows the selection of Mark and Space which clears or sets the parity
permanently.

Stopbits : You can allow 1 or 2 stop bits. The default is one stop bit.

RTS/CTS : Activates the RTS/CTS protocol. This has to be supported by both
communication partners and prevents from data losses by buffer overflow in
the UART (serial interface chip).

Xon/Xoff : This is a matter of a software protocol where the data flow is con-
trolled by two special data bytes Xon (decimal 17) and Xoff (decimal 19). Be-
cause the controls are part of the data stream this protocol cannot prevent from
possible data losses. Therefore some manufacturers implement this protocol
directly into the hardware like FTDI based converters (e.g. USB232CONV or
ISO232/ISO485 from IFTOOLS).

Port alias : Sometimes it would be nice to distinguish several serial ports by
giving each one an individual name. Especially if the ports have the same
vendor and product naming. Here you can input a name for the current port
under which the port is shown in the statusbar afterwards.
Allowed characters for an alias name are: A-Z, a-z, 0-9, ’−’, ’_’ and the space.
Use the backspace to delete a former input.

Start and stop the connection
Here start means to open the connection/port and stop to disconnect it again.
After you have finished the port setup, close the port settings dialog and click
the green button in the toolbar to activate the connection between the CleverT-
erm and the serial port.
During an active (opened) connection you are not allowed to change the port
setup (for good reasons). The ’Set’ button therefore is disabled.

5

CHAPTER 2. OPERATING

Now - an active connection assumed - you are ready to input some text or data
you want to send throughout the given serial port.

2.2 Send data sequences
Sending sequences can be either typed in manually in the transmission win-
dow or automated by an individual Lua script. The latter let you extend the
CleverTerm by own sending apps (dialogs) using the full power of the Lua script
language.
Writing a customized dialog is covered in an separate chapter. Here we focus
on the ’normal’ way to input any desired data sequence and send it throughout
the connected port.

Enter sending data
The input format for the to be transferred data depends on the used protocol.
Mostly it is a question about how single bytes are transferred. Simple protocols
often limit the allowable data bytes to the range of ’printable’ ASCII characters
and use the so called control characters (range 0...31) to mark the start and
end of a valid data sequence. For example: STX/ETX protocols or the modem
command mode specified by Hayes, where each command has to be finished
with an <CR> (Carriage Return).
Other protocols are using a pair of the characters 0-9 and A-F to transmit any
byte value. The disadvantage: You need always two characters to send one
byte which obviously blows the whole data volume up by a factor 2. Examples
therefore are the Motorola SRecord (SREC) format and Modbus ASCII.
More sophisticated protocols allow the full range of bytes for their data payload
- which means: Sending such a sequence includes characters you cannot sim-
ply input via your keyboard, (e.g. the NULL byte or all other ASCII codes above
hex 7F).
CleverTerm offers you an intelligent and simple input mode for every case. Be-
side the trivial ASCII input it also allows you to mix ASCII and binary data, input
a raw hex string and operate in a terminal like mode (send each hit key imme-
diately to the device as shown in the following image.

The modes are:

1 ASCII
2 Mixed

6

2.2. SEND DATA SEQUENCES

3 Hex

4 Terminal

and selected via the Input selector below the input window.

With exception of the Terminal mode all inputs are editable before they will be
sent by hit the Enter key.

ASCII Mode
All entered characters are send out only after hitting the Enter key. Until then
the input can be corrected in any way.

Hex Mode
The hex mode is a special mode to input raw binary data in an easy way. This
becomes very helpful, if you have to communicate via a protocol like Modbus
RTU. In Hex Mode you only can input valid hexdigits like 0-9, A-F (upper and
lower case) and the space as an optional separator character between each
byte. The space is NOT necessary and will be ignored during the transmission.
It is just for you to make your hex sentence more readable. The following
example shows the input of eight bytes in the range of 0 to 7.
00 01 02 03 04 05 06 07 In case of a selected checksum (Modbus LTU
or Modbus RTU), it will be calculated from the binary data and not from the
inputed line. Means: The checksum input are the binary values 0...7.

Mixed Mode
Corresponds to the ASCII Mode but the character ’$’ gets a special functional-
ity. The two characters directly behind the ’$’ are interpreted as hexadecimal
values. Of course only if they are from the range ’0’ to ’9’ or ’A’ to ’F’. This is
useful to insert any control character or characters which can not be found on
the keyboard into an ASCII send string.
As an example the Input of $FFHello World$00 leads to the sending of a
byte with the value 255, followed by the string ’Hello World’ and a closing null
byte.
To transmit the ’$’ itself in this mode enter $$ or its hex value $24.

Terminal Mode
The Raw mode is used to transmit every input character directly. This includes
also correcting keys like backspace or the arrow keys.

Select an EOS
Whether or which EOS (End of String) character is attached to the entered
characters is also decided by the user. You can select the EOS from a list.
CleverTerm will add it automatically at the end of the string to be send.

7

CHAPTER 2. OPERATING

Line repetition
While working with long command strings it is very annoying to enter them
again and again for repeating the command in original or slightly changed.
CleverTerm prevents you from this nerving action. Just hit Enter to send the
current line (which includes the cursor) again. Of course you can edit each line
(except for the terminal mode) before you repeat the sending.
A linefeed only occurs if you edit/send the last line in the input window. If
you like to insert a new empty line between two data sequences, just press
Shift+Enter.
It doesn’t matter where the cursor stays, but if you don’t want to wrap the line,
place the cursor on the line end or line start.
CleverTerm stores all your input lines in a history file and restore it when you
start the program the next time.
The history content is automatically removed when clearing the input window
with Ctrl+L or the ’Clear Input button’ below.

Checksums
In the current version CleverTerm offers two checksum generators for the LTU
and CRC16. Both are mainly used in the communication with Modbus systems.
The checksum will automatically appended to the data sequence to be send.
Please note! If you choosed an EOS too, the checksum will be add BEFORE
the EOS character(s).
If you need a special checksum and/or EOS, you can use the Lua dialog ex-
tension to build your very own telegrams. More on this topic later.

Cyclic transmissions
The default behaviour for a sending sequence is ’Single Shot’ which means,
after confirming your input with Enter, the data will be transmitted once. But
sometimes you want to repeat a transmission sequence automatically in certain
intervals. For instance a polling request or a telegram to check periodically for
new bus devices.
In such a case just click the down arrow on the right of the ’Single Shot’ control.
The opening list predefines four options displayed as ’Repeat 1s, 2s, 5s, 10s’.
You may think that this is a lean choice. But then every list is always limited.
CleverTerm therefore use a different approach and let you specify your very own
interval. For this just click INTO the selected item and type the desired interval
in seconds. For not whole-numbered intervals use the dot ’.’ as a decimal point
(not the comma). The four entries are serving simply as examples. CleverTerm
understands the following inputs:

Repeat 3s

Repeat 1.25s

Repeat 0.1

0.5

8

2.2. SEND DATA SEQUENCES

The word repeat is optional as well as the unit for seconds. The interval starts
when you input/send the next sequence.
To stop the sending loop choose ’Single Shot’ again. (The default entries will
stay in the list independent of your own repeat intervals).
The repeat/interval mechanism works also for self-written Lua extensions.

Send data via individual dialogs
How you can write your own sending dialogs (or CleverTerm apps) is part of an
independent chapter. Here we will just give you an idea what you are able to
achieve with this powerful feature.
If you don’t have already clicked the button with the magic wand (on the right

side of the Single Shot/Repeat control), click it now.
The Lua Script dialog ’controls.lua’ pops up, displaying all available graphical
elements (widgets or controls).
The dialog window is divided in three parts. On top is the dialog selector (which
shows you all your existing dialogs) and an ’Edit’ button to open the according
script in an editor.
On the bottom are the ’Close’ and ’Execute’ buttons. The ’Close’ button closes
the Lua dialog. The ’Execute’ button executes the dialog script and send the
result of the script evaluation throughout an active connection.

The important part is between them. The whole content is coded in a Lua
script. You can open the script in the editor and change every aspect of the
displayed dialog elements interactively. Every modification is applied automat-
ically to the shown dialog as soon as you save your changes in the editor. We
will discuss this - as mentioned before - in all details later.
At the moment just play with the shown graphic elements. The ’Reset’ button
performs a simple preset of a certain number of controls and toggles the ac-
cessibility of the ’Choice’ control.
The radio box let you switch the input mode of the text control below. ASCII
allows you to enter all characters, whereas HEX limit the allowed characters to
the hex digits and DEC further more to the decimal numbers.
A click on the ’Execute’ button collects a selection of your modifications and
send it to the active serial port.

The control.lua is intended in particular to demonstrate the usage of the pro-
vided graphic controls (GUI elements or widgets). Beside this script are other
dialogs scripts, e.g. to simulate Modbus server requests (modbus.lua), a dialog
to send a sequence of random bytes and an example for the table element. You
can easily switch between the available dialogs by selecting another one with
the top selector.

You can easily watch the output of every dialog by starting a connection (press
the green Start button in the toolbar) and switch on the internal ’Local Echo
Mode’. A local echo means that every sent byte is also ’echoed’ in the receiving

9

CHAPTER 2. OPERATING

channel to display the transmitted data in the receive window too. You can
enable/disable the local echo in the ’View’ menu or simply by pressing Ctrl+E .

2.3 The data reception window
The reception window is split into a Hexdata and Telegram view and displays
all data received form the connected device. Since CleverTerm delegates the
handling of the transmitted data to an autonomous thread, the data is displayed
immediately and will not be disturbed or interrupted by any user interaction.
Every view let you scroll through the received data independent of each other.
If you press the ’Autoscroll’ button in the toolbar, both views will always show
the recently received data.

The Hexdata View
As already indicated in it’s name, this view (or window) shows the incoming
(received) data bytes in a typical hex dump presentation. Each byte is displayed
with it’s hex value and - if printable - in it’s ASCII representation.
The number of hex values per line depends on the width and the font size of
the view. You can change the width by dragging the sash divider to the left
or right - and/or by increasing/decreasing the font by turning the mouse wheel
while holding the Ctrl key.
You can - of course - hide the complete Hexdata view by clicking the closing
cross in it’s frame or make it the main window by clicking the maximize frame
button. A hidden view can be restored from within the program’s ’View’ menu.

Mark data bytes in different colours
As a special feature the Hexdata view let you mark certain bytes or a range
of bytes in a different colour. For this, just click the ’Properties’ button in the
toolbar and select the ’Colours’ tab. Each colour rule is defined by a start and
end value. If both are the same only this byte is displayed in the selected color.
The colour settings are stored automatically at program end.

The Telegram View
The main purpose of the telegram view is to split the received data in individual
byte sequences. It achieves this by using the chosen EOS as a delimiter or
end marking. Incoming bytes are displayed as normal characters or - in case
the byte isn’t printable - as a little box with it’s hex value.
As soon as the Telegram View detects an EOS, it will start the next byte in a
new line. This kind of data display is mainly addressed to protocols with an
telegram end consisting of a CR, LF or a combination of both. Modbus ASCII
is a typical example.
As like the Hexdata view also the font size of the Telegram view can easily be
changed by turning the mouse wheel while holding the Ctrl key.

10

2.4. THE DEVICE STATUS WINDOW

Display the telegram time stamp
A pure software solution will never be able to give you the ’real’ time when a
data byte arrives. This is an often misunderstood fact and a source of specula-
tions and discussions. Here are only the main facts:

1 Incoming bytes are buffered by the hardware (the UART of a serial port or USB
to RS232 converter) and handled by the OS on a later point in time. The time
depends on things like interrupt priorities (the serial port as a low priority in
comparison with hard disk or network interrupts).

2 The USB to serial converter are mostly polled by the USB sub system which
add another not predictable time offset to the byte time stamp.

3 Only a hardware which generates the time stamp immediately and stores both
- byte and time - will provide you with time critical information.

Nevertheless the Telegram View offers you to display the time when the first
byte of a telegram was received by the program (and NOT when it first and
really occurred in the hardware!).
The time stamp is shown with 0.1s resolution. On modern PCs this is an ac-
ceptable value since the delay between the first arose of the byte and the pro-
cessing by the OS are mostly less than 0.1s. But keep in mind, that special
circumstances can cause an increasing delay. The time stamp in the Telegram
View therefore are above all rough guide values, not more.
You can enable/disable the time stamps in the program’s ’view’ menu.

2.4 The device status window
In addition to the receipt and transmission windows CleverTerm provides you
with a special device status section. This area below the sending input con-
trol not only shows the current line states, it also displays transmission flaws
like frame and parity error, real breaks and data overruns reported by the con-
nected device.

RTS and DTR are outputs whose level can be switched by the respective key,
e.g. to test hardware protocols. The current line states are symbolized like
a Led tester. A green Led means a negative signal level (-12V), a red one a
positive signal level (+12V). Off Leds indicate a closed or inactive port.
Please note that the line states are only sampled during an active connection.
The number of occurring frame, parity errors and breaks is also an approxi-
mate value because most UARTs (and USB converters) only report that such
an error arose in general but not for single bytes.
Apart from that it is still a great benefit to know about these errors in a trans-
mission.

11

CHAPTER 2. OPERATING

Finally the status window shows you the number of received and sent bytes.
You can control the counting in the ’Properties’ dialog. Especially when the
counters have to be reset to zero. Possible settings are:

Never during an active connection (the default)
Every time a new file is transmitted
Every time a new data sequence is sent

2.5 File transfer
CleverTerm offers you two ways to transfer a file content to the connected device.
Both require an active (open) connection. Otherwise the according toolbar
button and menu entry are disabled.

Click the ’File transfer’ button in the toolbar or press Ctrl+T and select a file
from the file dialog
Drag and drop a file into the program window

The second alternative is especially interesting if you have several files you
want to transfer. Instead of selecting a file again and again within a file dialog
you can simply pick it up from your desktop or an open file browser.
The file transfer is done by an autonomous running thread and the data is
transmitted with the maximum speed provided by the connected device - inde-
pendent of any other user interaction.
During the file transfer a progress bar with a stop/cancel buttons appears in the
right corner of the status bar. The gauge there informs you about the transfer
progress. Here you can also stop the transfer by clicking on the red stop button.

2.6 Save your settings
You can save your current settings (connection parameter, window partitioning,
program size and position) at any time as an individual configuration file. Clev-
erTerm uses the file extension cterm for this files. The extension is registered
as a CleverTerm file association with an own file icon during the program instal-
lation.
To start the CleverTerm with a saved setup, just double-click a saved cterm file
or right-click the file icon and select ’Open with CleverTerm’.

2.7 Save received data
CleverTerm records all transmitted data in the background. You can save the
received data at any time by pressing Ctrl+S . CleverTerm writes the read
data (IN-coming data) as a binary file. All sent data (displayed when ECHO is
on) are discarded and will not appear in the binary file.
The resulting file ONLY contains incoming data!
Please note that a clearing of the received data via the clear button in the
toolbar also empties the background data buffer and the data cannot be saved
furthermore!

12

2.8. SHORT KEYS

2.8 Short keys

Short keys
of the most important
functions

Action Short key

Online Help to CleverTerm F1

Opens the currently selected interface F2

Closes the currently selected interface F3

Input window: Send the current line to the connected
device

Enter

Input window: Insert a new empty line Shift + Enter

Sends a Break Ctrl + B

Toogle the DTR line Ctrl + D

Switch the echo mode in the output window on or off Ctrl + E

Switches to hex display Ctrl + H

Clears the output window Ctrl + L

Opens a file for output over the active interface Ctrl + O

Toggle the RTS line Ctrl + R

Saves the received data into a file Ctrl + S

Switches to ASCII display Ctrl + T

Saves all settings and closes the program Ctrl + X

Activates or deactivates the scrolling of the output win-
dow

Ctrl + Shift + S

13

CHAPTER 2. OPERATING

14

3
Lua dialogs

A unique feature of the CleverTerm program is the option to extend
its functionality by own sending dialogs. These range from simple
inputs like to generate telegrams with individual checksums to a
complete simulation of Modbus master requests. The dialogs are
written in Lua, here we cover the necessary details.

Lua is not only one of the fastest scripting languages in the world - because of
its nice and simple design it is also very easily to learn. Beside this Lua contains
some special concepts which make it the first choice to add the benefits of a
scripting language to the CleverTerm program.
It’s obvious that we cannot give you a complete introduction in Lua. There are
better sources to learn the language in the web. First of all the⇒ Lua web site
and a nice⇒ Lua tutorial.
Here we will focus on the CleverTerm’s Lua extension and how you can use it to
write interactive dialogs for your very own application.

3.1 How it works
Before we start to explain the writing of dialogs in detail, here an short overview,
how a typical dialog looks like and how you can use it to simulate specific trans-
missions.

Every scripted Lua dialog (the orange area on the right image) is encapsulated
in a special CleverTerm dialog frame, providing you with a script/dialog selector,
an edit button (to modify the actually shown dialog) and - regarding the purpose
of the CleverTerm - the most important thing - an ’Execute’ button.
The latter invokes that part of the Lua code which build the wanted transmission
sequence and passes it to the CleverTerm sending mechanism.
According to this every dialog consists of two main parts:

1 The Lua function dialog holding the code for the graphical user interface re-
sponsible for the orange area in the right image.

2 The Lua function apply which is called by the ’Execute’ button and returns the
transmission sequence as a Lua string.

15

http://www.lua.org
http://lua-users.org/wiki/TutorialDirectory

CHAPTER 3. LUA DIALOGS

A dialog can - of course - consist of a lot more functions. But these two above
are essential for every functional CleverTerm dialog.

3.2 The dialog framework
Wherever GUIs (Graphical User Interface) are concerned, one of the first ques-
tions is always: How to arrange the several control elements?
There are various approaches to put controls together. One is to positioning
them absolutely by specifying position and size. But this would be cumbersome
and laborious.
CleverTerm uses a more elegant way to align your controls more or less in an
automatic way.
For this CleverTerm covers the dialog area with an invisible grid. The grid is not
limited in width and height and the columns width and rows height are auto-
matically adapted to the controls size.
You can imagine the grid like a letter (or type) case. Every box in it can contain
a single control. By arranging your controls in columns and rows you are able
to produce nice and user-friendly graphical interfaces.
To place a control in a certain box, simply pass the column and row index. The
invisible grid is expanded as necessary and the width of the column (or height
of the row) is adapted to the needed size of the placing control.
And more: If you want to replace an element in a box (for instance to adapt the
element after an user interaction), just overwrite the existing one by putting the
new element into this box (or cell).
Consider the following figure:

0

15

First byte

Last byte

Dialog headline

Col1 Col2

Row1

Row2

Row3

This little dialog consists of two columns and three rows which gives you a grid
of 2 x 3.
The first row is completely occupied by a headline (using an additional col span
parameter).
The second row has a text label ’First Byte’ in the left (first) column and a so
called Spin Control to pass a number value by increment or decrement the in-
put on the second column.
The third row is to specify the last byte by again a text label ’Last byte’ and
another Spin Control to pass the last byte value.

Not used grid cells between elements stay empty. This gives you an easy way
to group controls together by keep them spatially away from others.

16

3.3. ADD WIDGETS ELEMENTS TO YOUR DIALOG

And that’s is the corresponding Lua code:

1 function d ia log ()
2 −− the headl ine l a b e l spanned over two columns
3 widgets . Label { name=" headl ine " , t e x t =" Dia log headl ine " ,
4 row=1 , co l =1 , span=2 }
5 −− l a b e l and f i r s t byte i npu t c o n t r o l
6 widgets . Label { name=" labe l1 " , t e x t =" F i r s t byte " , row=2 , co l =1 }
7 widgets . Sp inC t r l { name=" f i r s t " , row=2 , co l =2 ,
8 min=0 , max=255 , value=0 }
9 −− l a b e l and l a s t byte i npu t c o n t r o l

10 widgets . Label { name=" labe l2 " , t e x t =" Last byte " , row=3 , co l =1 }
11 widgets . Sp inC t r l { name=" l a s t " , row=3 , co l =2 ,
12 min=0 , max=255 , value=15 }
13 end

Don’t worry, if you have some difficulties to understand this script. We will
explain all details later. Here it only should give you a first impression how
easily a dialog is implemented with a few code lines.

3.3 Add widgets elements to your dialog
All the coding for your dialog has to be done in the function dialog. This is the
only function which the CleverTerm Lua interpreter executes when it evaluates
the GUI (graphical user interface).
For more complicated user interfaces like the Modbus dialog, you can out-
source part of the code into other functions. But each of them has to be called
at least from within dialog.
The supported graphical elements are pooled all in one module. A module in
Lua is like a library in other programming languages. You can imagine it as a
collection of functions which deal especially with widgets.
To call a certain module function, Lua expects the module name, followed by a
dot and the function name. For a button it’s like this:

1 widgets . Button { PARAMETER . . . }

Now let’s start with an empty dialog as described in section 3.6. At first this is
nothing else than an empty or even not existing dialog function.

1 function d ia log ()
2 end

The content of the function block is not limited to widget functions alone. You
can do all kind of Lua coding here, but avoid time-consuming stuff, otherwise
your dialog will become inoperable.

Add a new widget element to the dialog is easy. Just insert the according
widgets module function and pass the necessary parameters to it. Every widget
needs at least an unique name and a position specified by a column and row
value. For the moment you only have to know that the name must be singular

17

CHAPTER 3. LUA DIALOGS

because we need it for accessing the widget later. We will cover this in a greater
extend in the next section.
The first widget in our dialog is a label serving as a headline. For this it spans
over all - in our case two columns (span=2).

1 function d ia log ()
2 widgets . Label { name=" headl ine " , t e x t =" Dia log headl ine " ,
3 row=1 , co l =1 , span=2 }
4 end

The label position starts in the first column (1) and row (1). The parameter
text defines the label text, name is the name of the widget, here headline.
Next we want to add a SpinCtrl to input the first value of the sending byte
sequence. For a better usability the SpinCtrl should have a brief text explaining
the meaning of the control.

1 function d ia log ()
2 widgets . Label { name=" headl ine " , t e x t =" Dia log headl ine " ,
3 row=1 , co l =1 , span=2 }
4 widgets . Label { name=" labe l1 " , t e x t =" F i r s t byte " , row=2 , co l =1 }
5 widgets . Sp inC t r l { name=" f i r s t " , row=2 , co l =2 ,
6 min=0 , max=255 , value=0 }
7 end

The briefing label gets the text ’First byte’ and is positioned in the second row
and left (first) column.
To the right, same row, second column, is the new Spin Control located. The
range of valid input values starts with 0 and ends with 255. It’s initial value is 0.
You can increase the row or col and see how the widget is new positioned after
saving your modifications.
By repeating the last steps for the second SpinCtrl we have finished our little
example. Without any comments the code now should look like:

1 function d ia log ()
2 widgets . Label { name=" headl ine " , t e x t =" Dia log headl ine " ,
3 row=1 , co l =1 , span=2 }
4 widgets . Label { name=" labe l1 " , t e x t =" F i r s t byte " , row=2 , co l =1 }
5 widgets . Sp inC t r l { name=" f i r s t " , row=2 , co l =2 ,
6 min=0 , max=255 , value=0 }
7 widgets . Label { name=" labe l2 " , t e x t =" F i r s t byte " , row=3 , co l =1 }
8 widgets . Sp inC t r l { name=" l a s t " , row=3 , co l =2 ,
9 min=0 , max=255 , value=0 }

10 end

All interactive widgets of the dialog are behaving like expected. This means:
You can increase or decrease the value of the both Spin Controls in the given
range. If you restart the dialog by re-chose it again in the dialog selector, the
initial values reappears.
That looks promising - but without getting some output of the dialog, it keeps
nevertheless meaningless. The next section explains how you query any input
from a certain control or widget and how you handle user interactions like clicks
directly.

18

3.4. DIALOG ELEMENT INTERACTION

3.4 Dialog element interaction

Building a dialog by placing the necessary elements is merely the first thing.
You can play around with the controls - but how do you query the values and
states of each control?
And how do you pass the user inputs to the connected device?
To achieve this you must access every widget individually.

Considering again the datablock.lua dialog from last section. When the
user clicks the Execute button, a data sequence has to be built starting with
the byte value of the first SpinCtrl and ending with the byte value specified in
the second SpinCtrl.
To do so we must query the counter value of both spin controls in the apply

function. (Remember, the apply function is automatically called when the user
clicks the Execute button).

Accessing individual elements by name

To distinguish the two spin controls - and in general every graphical widget you
are using in a dialog - each widget element must have an individual and unique
name. The CleverTerm Lua dialog extension uses the name to provide you with
a simple method for accessing the properties of each element. This includes
getting and setting the input value and/or enable/disable the widget.

Back to our example. Let’s say the first spin control is named ’first’ and the
second as ’last’. The according function to ask a widget for it’s value is:

1 value = widgets . GetValue ("NAME")

One of Lua’s special features is that you don’t have to worry about the resulting
type. In most cases Lua handles the requested value (number or string) auto-
matically. Here we expect a number from both spin controls.
Retrieving the first and last byte value is done in two lines (2 and 3 in the fol-
lowing listing). The rest is a little bit of Lua coding. We just make sure that we
iterate from the lower to the higher value since the user may have input a ’last’
value lower than specified in the first spin control.
The remaining thing is to build the data sequence by adding byte values form
first to last and returning the result.

1 function apply ()
2 local f i r s t = widgets . GetValue (" f i r s t ")
3 local l a s t = widgets . GetValue (" l a s t ")
4 local data = ’ ’
5
6 i f f i r s t > l a s t then
7 −− the Lua way to swap a p a i r o f values
8 f i r s t , l a s t = l a s t , f i r s t
9 end

19

CHAPTER 3. LUA DIALOGS

10 −− b u i l d the r e s u l t i n g Lua s t r i n g (byte sequence)
11 for i = f i r s t , l a s t do data = data . . s t r i n g . char (i) end
12
13 −− and r e t u r n i t to the CleverTerm program
14 return data
15 end

Defining element action handlers
An action handler is a function which is called every time a widget element is
clicked, selected, modified or similar. It is also known as a ’callback’ function.
They are particular useful when a user interaction demands an immediate re-
action. Examples are the click of a button or the adaption of other elements
depending on an user input.
Let’s look once again on our little example.
In the dialog the user can select a range of bytes specified by a first and last
byte value. If the first value is greater than the last or vice versa, both values
are interchanged to ensure an always valid boundary (line 6...9 in the code
above).
This is a nice thing to demonstrate the easy swapping of two values with Lua
but it doesn’t provide a really good user interface. It would be much better, if
the respective other value is automatically adapted if necessary.
To achieve this, we must add an action handler (callback) for both spin controls.

The CleverTerm offers a very simple way to write a callback for every widget
element. A callback function is defined as:
function callback_NAME (value)

−− do something
end

The important detail here is NAME. It reflects the name of the widget you want
to have an action handler for. As soon as you have added a callback function
for a given widget, it will be executed every time the user interacts with it.
In our example the necessary functions are named as callback_first and
callback_last. See the listing below:

1 function c a l l b a c k _ f i r s t (f i r s t)
2 local l a s t = widgets . GetValue (" l a s t ")
3 i f tonumber (f i r s t) > tonumber (l a s t) then
4 widgets . SetValue (" l a s t " , f i r s t)
5 end
6 end

7 function c a l l b a c k _ l a s t (l a s t)
8 local f i r s t = widgets . GetValue (" f i r s t ")
9 i f tonumber (l a s t) < tonumber (f i r s t) then

10 widgets . SetValue (" f i r s t " , l a s t)
11 end
12 end

The internal callback mechanism always passes the current widget state or se-

20

3.5. MORE POSITIONING AND INTERACTION

lection as a Lua string. The string type was choose to cover all different widget
inputs. Imagine a callback for a text input, or a list control.
Although Lua makes a lot of type conversion automatically, there is sometimes
no alternative than to convert a string into a number by ourselves. In particular
if Lua doesn’t know (and cannot predict) which kind of variable we want it to act
on.
That applies to this example too, since we must compare to values (the first
and last) as numbers and not as strings. A comparison as strings follows com-
pletely other rules, e.g. the position of the first character in the alphabet.

The callback function for the first spin control callback_first is called as
described with it’s current value. To check, if this value is greater than the actual
’last’, line 2 queries the current input of the second spin control named ’last’.
Afterwards both values are compared as numbers by tell Lua to handle both as
numerical values with tonumber1.
Is the first value greater, the spin control of the last value is updated in line 4.
The same approach is used for the last spin control in callback_last but
only in reverse order.

You can test how it works by open the Lua dialog and choose datablock.lua.

3.5 More positioning and interaction

As mentioned before, all widgets in the dialog are organized by an invisible
grid. You can pass the position (specified by the column and row) directly (as
seen in the example code in the previous section) or as a result of a former
computation. This also applies to all other widget parameters.
Imagine you want a 3x3 grid of buttons. A first approach will lead you probably
to something like this:

A 3x3 button grid

1 function d ia log ()
2 widgets . Button { name="B1 / 1 " , l a b e l ="B1 / 1 " , co l =1 , row=1 }
3 widgets . Button { name="B2 / 1 " , l a b e l ="B2 / 1 " , co l =2 , row=1 }
4 widgets . Button { name="B3 / 1 " , l a b e l ="B3 / 1 " , co l =3 , row=1 }
5 widgets . Button { name="B1 / 2 " , l a b e l ="B1 / 2 " , co l =1 , row=2 }
6 . . .
7 end

But instead of writing nine lines of widgets.Button{...} code, you can
achieve this more easier by creating the buttons in a loop.

1Lua would do the conversion by itself as soon as it must perform a typical calculation like
last=last+1

21

CHAPTER 3. LUA DIALOGS

1 function d ia log ()
2 for row=1 ,3 do
3 for co l =1 ,3 do
4 local s = "B " . . co l . . " / " . . row
5 widgets . Button { name=s , l a b e l =s , row=row , co l=co l }
6 end
7 end
8 end

Elements of a calculator
arranged in a grid

An interesting part of this little code snippet is line 4. Since Lua handles differ-
ent kinds of variables like numbers or string almost automatically, it’s very easy
to build a string from different values. Here we are using the Lua string con-
catenation operator .. to create an unique name s from the buttons column
and row position. Every name starts with a uppercase ’B’ (a string), the column
(Lua converts the column number to a string for you), followed by the separator
’/’ and the row.
The resulting variable s is then assigned to the button name and label in line 5.

An example of how to use this technique to create nice looking dialogs is
calc.lua. It contains a small but nevertheless full functional calculator. Since
it doesn’t send any data it’s only purpose is to demonstrate the writing of a cal-
culator user interface. (See the calculator picture on the left).
Here is the code for the dialog.

1 function d ia log ()
2 widgets . T e x t C t r l { name=" d i sp lay " , co l =1 , row=1 , span=4 , f i l l =true ,
3 datatype=DEC_NUMBER }
4 local l a b e l s ={ " 7 " , " 8 " , " 9 " , " x " ,
5 " 4 " , " 5 " , " 6 " , " / " ,
6 " 1 " , " 2 " , " 3 " , "+ " ,
7 " 0 " , " . " , " = " , "−" }
8 local i = 1
9 for y=2 ,5 do

10 for x=1 ,4 do
11 widgets . Button { name= l a b e l s [i] , l a b e l = l a b e l s [i] , co l=x , row=y }
12 i = i + 1
13 end
14 end
15 widgets . Button { name=" Clear " , l a b e l ="C/CE" , co l =1 , row=6 }
16 end

In the calculator example we combine a hard-coded position for the calculator
display (line 2...3) and the ’Erase’ key C/CE (line 15). The display itself is
spanned over all four columns.
The number and operator keys are arranged in a 4x4 grid and will be created
in a loop (line 9...14). Since the TextCtrl occupies the first row, we start with
row 2 and iterate until row 5 was finished.
Each row has four columns and the inner loop in line 10 reflects this by counting
from1 to 4.
Line 4...7 specify the name and labels for the button which we assign in line 11.
All in all, the whole user interface of the calculator needs just 16 lines of code.

22

3.6. CREATE A NEW DIALOG

Advanced callbacks
With one exception (the TextCtrl) the calculator GUI consists of only buttons.
When the user clicks on of the number buttons, the according digit should be
inserted or attached to the value in the display field.
By clicking an arithmetic key the operation has to be stored and applied to the
next input value when the user clicks the = .

At least the C/CE . If clicked all inputs should be cleared as usual.

We have learned so far, that we can use a callback function for every individual
widget. This could be a proven method here too, but with 17 callbacks it would
also be a rather unmanageable approach. Especially since some buttons, al-
though different, require the same action. (For instance the digit buttons 0...9
simply have to add their number to the displayed value).
A single callback for all buttons would serve us a lot more. Every time the user
clicks a button, a common button callback is invoked and performs an action
depending on the pressed button.

The CleverTerm Lua extension acts exactly like this.
First it looks for an individual callback and performs the code there. Then it
calls a function callback_all_buttons. If such a function exists, the code
is executed too. The function body looks like

1 function c a l l b a c k _ a l l _ b u t t o n s (name)
2 end

and the parameter contains the name of the clicked button.
With a single function answering to the click of every button the reacting and
computing code remains relative easy. Just open the calc.lua in the editor
and take look. The code is well documented.

3.6 Create a new dialog
Starting a new dialog is easy.

Opens the Lua dialog

1 Open the Lua dialog by clicking the wizard wand button.

2 Click the new document icon (with the green plus)

3 Save the new empty document under a new name by clicking the save button
in the editor toolbar or press Ctrl+S .

4 The new (and still empty) dialog appears in the Lua dialog.

5 Start your coding. Your modifications are automatically applied every time you
save your work.

CleverTerm comes with an integrated and full equipped script editor. The usage
of the editor is covered in detail in 4.

23

CHAPTER 3. LUA DIALOGS

How CleverTerm manages your dialogs
CleverTerm looks for new dialogs or script changes exclusively in the dialogs

folder for local (not shared) user-dependent application data files. The direc-
tory location depends on the operating systems.

For Windows it is:
C:\Documents and Settings\username\Local Settings\←↩
Application Data\CleverTerm\dialogs

Under Linux:
~/.CleverTerm/dialogs

If you store your dialog scripts under another place, CleverTerm cannot detect
changes in your script and therefore won’t update the according dialog.

Store your scripts always in the given dialogs folder

The Lua dialog monitors the scripts in the dialogs folder only. Ev-
ery time the script of the currently shown dialog is changed, CleverTerm
reloads and executes the script to apply your modification to the actual
dialog. This will not happen if the script is stored in a different place!

3.7 Supported Dialog elements or widgets

Supported dialog
elements

All the elements listed here are part of the CleverTerm Lua widgets extension.
Please note that the widgets functions work only in a CleverTerm dialog con-
text and cannot be used outside of the CleverTerm program.

Every widget supports the parameters listed below. Please note that although
all parameters are optional in a sense of that you can omit them without pro-
ducing an error, some are nevertheless mandatory for a correct operating of
your code.

For a better reading we mark every parameter with the following symbols:⊗
A mandatory parameter⊙
An optional parameter

Named parameters
A few additional words regarding the parameter passing. You may have noticed
that all widget element parameters follow the conversation:

PARAMETERNAME=VALUE

This is not Lua typical but we decided that so called named parameters are
more convenient and even more understandable. And: you don’t have to worry

24

3.7. SUPPORTED DIALOG ELEMENTS OR WIDGETS

about the parameter order. For instance:

1 widgets . Button (" MyButton " , " Press " , 1 , 3 , true)

Without a look in the manual it’s hard to get the meaning - isn’t it? What is the
widget name, what the button label, does 1 mean the row or the column and
what is true?
On the other hand the same code with named parameters:

1 widgets . Button { name=" MyButton " , l a b e l =" Press " , co l =1 , row=3 , f i l l = true }

The meaning should be obvious.
Please note: Named parameters are always included between an opening and
closing brace {...} because Lua sees the parameter as a table. Normally
you would have to write: ({...}) but the outer brackets are optional here and
you can forego them.

Common widget parameters
Every widget understands at least the following so called named parameters.
Named parameter means: You pass a parameter by assign a parameter value
to the parameter name like this:

name="MyName"
co l =1
f i l l = true

The parameters are listed mandatory first.⊗
name : Every widget needs an individual name with which you can later access
the control, e.g. to query the input value or a selection.⊗
col : Specifies the column index where the widget should be placed. The index
starts from 1. Default is the first column.⊗
row : Specifies the row number where the widget should be placed. The index
starts from 1. Default is the first row.⊙
datatype : Especially the text input control can be used to handle different data
types like binary, decimal and hexadecimal numbers but also normal (ASCII)
text or HEX strings. With the |datatype| parameter you can determine the range
of allowed input characters and also how to handle the given input value after
a request. Valid parameters are:
BIN_NUMBER, DEC_NUMBER, HEX_NUMBER, ASCII_STRING, HEX_STRING⊙
datalen : Specifies the valid length of the input data. For instance: How many
characters of an input should be used during the value request.⊙
fill : Set this parameter to true if you want to fill the whole available cell space
with the widget element.⊙
span : You can ’span’ a widget over several columns by assign the number of
columns to this parameter.

Beside the parameters above some widgets understand additional parameters,
which we will explain in the according widget section.

25

CHAPTER 3. LUA DIALOGS

Button
A simple button with a text label.

widgets . Button { name=STRING, l a b e l =STRING, co l=NUM, row=NUM,
f i l l =BOOL, span=NUM }

⊗
name : the button name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊙
label : the button label⊙
fill : fill the cell completely, true or false⊙
span : the number of spanned columns as an integer

Example

1 function d ia log ()
2 −− a but ton on top l e f t 2
3 widgets . Button { name=" MyButton " , l a b e l =" Press " , co l =1 , row=1 }
4 end

5 −− t h i s ca l l back i s executed every t ime the but ton i s c l i c k e d
6 function cal lback_MyButton ()
7 −− do something . . .
8 end

CheckBox
A checkbox is a labeled box which can be either true (checkmark is visible) or
false (checkmark is absence).

widgets . CheckBox { name=STRING, l a b e l =STRING, co l=NUM, row=NUM,
f i l l =BOOL, span=NUM }

⊗
name : the checkbox name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊙
label : an optional label shown on the right side of the checkbox⊙
fill : fill the grid cell completely, true or false⊙
span : the number of spanned columns as an integer

Example

26

3.7. SUPPORTED DIALOG ELEMENTS OR WIDGETS

1 function d ia log ()
2 −− a but ton we want to s t r e t c h or sh r i nk
3 widgets . Button { name=" MyButton " , l a b e l =" Press " , co l =1 , row=1 }
4 −− a checkbox to togg le a f i l l parameter
5 widgets . CheckBox { name="MyCheckBox " , l a b e l =" S t re tch the but ton " ,
6 co l =1 , row=2 }
7 end

8 −− t h i s ca l l back i s executed every t ime the checkbox i s c l i c k e d
9 function callback_MyCheckBox (s e l e c t i o n)

10 −− query the p o s i t i o n o f the but ton widget
11 row , co l = widgets . GetPos i t ion (" MyButton ")
12 −− rec rea te the but ton wi th the new f i l l parameter
13 widgets . Button { name=" MyButton " , l a b e l =" Press " ,
14 co l=col , row=row , f i l l =(s e l e c t i o n ==" true ") }
15 end

Choice
A choice widget let you select one of a list of strings. Only the current selection
is displayed. The list of available strings is only shown when the user pull
downs the menu of choices.
widgets . Choices { name=STRING, co l=NUM, row=NUM, f i l l =BOOL, span=NUM,

choices ={STRING1, STRING2 [, . . .] } }⊗
name : the choice name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊗
choices : a Lua table with at least one string⊙
fill : fill the grid cell completely, true or false⊙
span : the number of spanned columns as an integer

Example

1 function d ia log ()
2 −− a but ton we want to s t r e t c h or sh r i nk
3 widgets . Button { name=" MyButton " , l a b e l =" Press " , co l =1 , row=1 }
4 −− a checkbox to togg le a f i l l parameter
5 widgets . Choice { name="MyChoice " , co l =1 , row=2 ,
6 choices ={ " Shr ink but ton " , " S t re tch but ton " } }
7 end

8 −− t h i s ca l l back i s executed every t ime a choice i s made
9 function callback_MyChoice (s e l e c t i o n)

10 −− query the p o s i t i o n o f the but ton widget
11 row , co l = widgets . GetPos i t ion (" MyButton ")
12 −− rec rea te the but ton wi th the new f i l l parameter
13 widgets . Button { name=" MyButton " , l a b e l =" Press " ,
14 co l=col , row=row ,
15 f i l l =(s e l e c t i o n ==" S t re tch but ton ") }
16 end

27

CHAPTER 3. LUA DIALOGS

Label
The label widget is used to show any static (not clickable) text. For instance an
explaining label for another widget.

widgets . Label { name=STRING, co l=NUM, row=NUM, f i l l =BOOL, span=NUM,
t e x t =STRING}

⊗
name : the choice name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊗
text : a Lua string uses as the label⊙
fill : fill the grid cell completely, true or false⊙
span : the number of spanned columns as an integer

Example

1 function d ia log ()
2 −− a exp la i n i ng t e x t f o r the but ton
3 widgets . Label { name=" MyLabel " , t e x t ="You can c l i c k me" ,
4 co l =1 , row=1 }
5 −− the but ton
6 widgets . Button { name=" MyButton " , l a b e l =" Disable me" ,
7 co l =1 , row=2 }
8 end

9 −− t h i s ca l l back i s executed every t ime the but ton i s c l i c k e d
10 function cal lback_MyButton ()
11 −− d isab le the but ton
12 widgets . Enable (‘ ‘ MyButton " , fa lse)
13 −− and adapt the l a b e l t e x t
14 local col , row = widgets . GetPos i t ion (‘ ‘ MyLabel ")
15 widgets . Label { name=" MyLabel " , t e x t ="You cannot c l i c k me anymore " ,
16 co l=col , row=row }
17 end

Line
This is just a line which is commonly used to divide several groups of controls.
A line always fills the complete space of a grid cell. With the span parameter
you can stretch the line over a number of columns.

widgets . Line { name=STRING, co l=NUM, row=NUM, span=NUM }

⊗
col : the column index as an integer⊗
row : the row index as an integer⊙
span : the number of spanned columns as an integer

28

3.7. SUPPORTED DIALOG ELEMENTS OR WIDGETS

⊙
name : the line name as a Lua string. Can be omitted if you don’t want to
access the line later.

Example

1 function d ia log ()
2 widgets . Label { name=" MyLabel " , t e x t ="A l a b e l " , co l =1 , row=1 }
3 widgets . Button { name=" Button1 " , l a b e l =" Press me" , co l =2 , row=1 }
4 widgets . Button { name=" Button2 " , l a b e l ="Or me" , co l =3 , row=1 }
5 −− draw a l i n e over a l l columns (span=3)
6 widgets . Line { span=3 , co l =1 , row=2 }
7 end

RadioBox
A radio box is used to select one of a number of mutually exclusive choices.
It is displayed as a vertical column or horizontal row of labeled and clickable
boxes.
widgets . RadioBox { name=STRING, co l=NUM, row=NUM, f i l l =BOOL, span=NUM,

choices ={STRING1, STRING2 [, . . .] } }

⊗
name : the radio box name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊗
choices : a Lua table with a string for each choice (at least one)⊙
fill : fill the grid cell completely, true or false⊙
span : the number of spanned columns as an integer⊙
orientation : The RadioBox orientation can be ’vertical’ (the default) or ’horizon-
tal’.

Example

1 function d ia log ()
2 widgets . RadioBox { name="MyRadioBox " , co l =1 , row=1 ,
3 choices ={ " v e r t i c a l " , " h o r i z o n t a l " } }
4 end

5 −− each c l i c k changes the o r i e n t a t i o n o f MyRadioBox
6 function callback_MyRadioBox (s e l e c t i o n)
7 widgets . RadioBox { name="MyRadioBox " , co l =1 , row=1 ,
8 choices ={ " v e r t i c a l " , " h o r i z o n t a l " } ,
9 o r i e n t a t i o n = se lec t i on ,

10 value= s e l e c t i o n }
11 end

29

CHAPTER 3. LUA DIALOGS

Spacer
A spacer is just an empty widget. It is especially used when you want to remove
a certain widget or - simply spoken - overwrite an existing widget with ’nothing’.

widgets . Spacer { name=STRING, co l=NUM, row=NUM, span=NUM } }

⊗
name : the spacer name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊙
span : the number of spanned columns as an integer

Example

1 function d ia log ()
2 widgets . Button { name=" MyButton " , co l =1 , row=1 ,
3 l a b e l =" C l i c k me" , f i l l = true }
4 widgets . RadioBox { name="MyRadioBox " , co l =1 , row=2 ,
5 choices ={ "Show but ton " , " Hide but ton " } }
6 end

7 −− Show or hide the but ton according to the RadioBox s e l e c t i o n
8 function callback_MyRadioBox (s e l e c t i o n)
9 i f s e l e c t i o n == "Show but ton " then

10 widgets . Button { name=" MyButton " , co l =1 , row=1 ,
11 l a b e l =" C l i c k me" , f i l l = true }
12 else
13 widgets . Spacer { co l =1 , row=1 }
14 end
15 end

SpinCtrl
A SpinCtrl is a combined number input field with two increment and decrement
buttons. This widget is used to adjust a integer value between a minimum and
maximum value either by input the value directly (it will corrected automatically
if the given limit is exceeded) or by increasing or decreasing it with the buttons.

widgets . Sp inC t r l { name=STRING, co l=NUM, row=NUM, f i l l =BOOL, span=NUM,
min=NUM, max=NUM, value=NUM} }

⊗
name : the SpinCtrl name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊙
fill : fill the grid cell completely, true or false⊙
min : the minimum value, default is 1⊙
max : the maximum value, default is 100⊙
value : the initial value, default is 1

30

3.7. SUPPORTED DIALOG ELEMENTS OR WIDGETS

⊙
span : the number of spanned columns as an integer

Example

1 function d ia log ()
2 widgets . Label { name=" MyLabel " , t e x t =" Va l i d numbers are 1 . . . 1 0 0 " ,
3 co l =1 , row=1 }
4 widgets . Sp inC t r l { name=" MySpinCtr l " , min=1 , max=100 ,
5 co l =1 , row=2 , value=10 }
6 end

7 −− always c a l l e d when the value i n the Sp inC t r l was changed
8 function ca l lback_MySpinCt r l (value)
9 local num = tonumber (value)

10 i f num >= 100 then
11 widgets . Label { name=" MyLabel " , t e x t ="Maximum number reached " ,
12 co l =1 , row=1 }
13 e l s e i f num <= 1 then
14 widgets . Label { name=" MyLabel " , t e x t ="Minimum number reached " ,
15 co l =1 , row=1 }
16 else
17 widgets . Label { name=" MyLabel " , t e x t =" Va l i d numbers are 1 . . . 1 0 0 " ,
18 co l =1 , row=1 }
19 end
20 end

Table
The Table widget is as its name revealed, an text input control organized as
a table. This means: You can create a table with two columns and four rows.
Every table cell serves as an text input for various strings or numbers. You can
even preset every table cell or pass a Lua array (table) to it.
A table is particular interesting for field bus systems where the participants
structure their values in register tables like Modbus.

widgets . Table { name=STRING, co l=NUM, row=NUM, f i l l =BOOL, span=NUM,
co ls=NUM, rows=NUM, preset=STRING,
choices ={STRING1, STRING2 [, . . .] } }

⊗
name : the Table name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊙
fill : fill the grid cell completely, true or false⊙
span : the number of spanned columns as an integer⊙
cols : the number of columns, default is 1 is 1⊙
rows : the number of rows, default is 1⊙
preset : the initial value for every table cell, default is an empty string.

31

CHAPTER 3. LUA DIALOGS

⊙
content : a Lua array or table which contains a certain number of strings or
numbers. The assignment starts with the first item in the passed content and
stops either when reaching the last Table cell or last content value.

Example

1 function d ia log ()
2 −− the number o f columns
3 local t c o l s = 3
4 −− the number o f rows
5 local t rows = 20
6 −− an empty tab l e ho ld ing the d e f a u l t values
7 local t va lues = { }
8
9 −− f i l l the tab l e w i th increment ing numbers s t a r t i n g w i th 1

10 for i =1 , t c o l s ∗ t rows do
11 tva lues [i] = i
12 end

13 −− spec ia l mark o f the f i r s t and l a s t t ab l e en t ry
14 tva lues [1] = " FIRST "
15 tva lues [# tva lues] = "LAST"
16 −− create a tab l e widget and pass the tva lues tab le as i n i t i a l values
17 −− to i n i t i a t e a l l t ab l e c e l l s
18 widgets . Table { name=" tab le " , co l =1 , row=1 , co ls= t co l s , rows=trows ,
19 preset ="FFFF" , content= tva lues }
20 end

TextCtrl
A TextCtrl comes in handy every time you need an input field for numbers or
text strings. The TextCtrl furthermore filters the key strokes according to its
input type. You can create a TextCtrl for plain decimal, hexadecimal or binary
values and - of course - for normal strings.

widgets . T e x t C t r l { name=STRING, co l=NUM, row=NUM, f i l l =BOOL, span=NUM,
datatype=TYPE, data len=NUM, value=STRING }

⊗
name : the Table name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊙
fill : fill the grid cell completely, true or false⊙
span : the number of spanned columns as an integer⊙
datatype : specifies the kind of input data. TextCtrl offers you the number types
BIN_NUMBER (binary), DEC_NUMBER (decimal) and HEX_NUMBER (hex-
adecimal). Additional ASCII_STRING (normal text) and HEX_STRING (which
is a sequence of hex characters). Depending on the passed datatype the input
filter is set. Default is ASCII_STRING.

32

3.8. FUNCTIONS DEALING WITH WIDGET ELEMENTS

⊙
datalen : Specifies the valid length of the input data. For instance: How many
characters of an input should be used during the value request.⊙
value : the initial value, default is an empty string

Example

1 function d ia log ()
2 widgets . RadioBox { name="MyRadioBox " , co l =1 , row=1 , l a b e l ="Mode" ,
3 o r i e n t a t i o n =" h o r i z o n t a l " ,
4 choices ={ " ASCII " , "HEX" , "DEC" , " BIN " } }
5 widgets . T e x t C t r l { name=" MyTextInput " , co l =1 , row=2 ,
6 datatype=ASCII_STRING , f i l l = true }
7 end
8
9 function callback_MyRadioBox (mode)

10 local f i l t e r = ASCII_STRING
11 i f mode== "DEC" then f i l t e r = DEC_NUMBER
12 e l s e i f mode== "HEX" then f i l t e r = HEX_NUMBER
13 e l s e i f mode== " BIN " then f i l t e r = BIN_NUMBER
14 end
15 widgets . T e x t C t r l { name=" MyTextInput " , co l =1 , row=2 ,
16 datatype= f i l t e r , f i l l = true }
17 end

3.8 Functions dealing with widget elements
You have already seen some of this functions in the examples when we were
querying an input from a widget or modifying it’s value.
The following functions are provided by the CleverTerm program. All these func-
tions expect an unique widget name.
Please note! Since the functions need not more than two parameters, the argu-
ments are passed directly and not as a NAME=VALUE pair. The only exception
is the SetDialogSize function.
A function with named parameters (NAME=VALUE pairs) expects the argu-
ments between two {}. Here the arguments are enclosed between two normal
round brackets ().

Enable
This function enables a widget for user interaction (which is the default state of
a widget element) or disables it. A disabled widget appears greyed out and is
not accessible by the user.

widgets . Enable (NAME, STATUS)

⊗
NAME : The name of the widget as a Lua string.⊗
STATUS : The new enable state of the widget, true or false

33

CHAPTER 3. LUA DIALOGS

Example

1 function d ia log ()
2 widgets . RadioBox { name="MyRadioBox " , co l =1 , row=1 , l a b e l ="Mode" ,
3 o r i e n t a t i o n =" h o r i z o n t a l " ,
4 choices ={ "ENABLED" , "DISABLED" } }
5 widgets . T e x t C t r l { name=" MyTextInput " , co l =1 , row=2 ,
6 datatype=ASCII_STRING , f i l l = true }
7 end
8
9 function callback_MyRadioBox (mode)

10 local enable = true
11 i f mode== "DISABLED" then enable = fa lse
12 else enable = true
13 end
14 widgets . Enable (" MyTextInput " , enable)
15 end

GetPosition
Asks a widget with the given name for its position in the grid. This function is
especially useful if you favorite a dynamic column and row assignment.

POSITION = widgets . GetPos i t ion (NAME)

⊗
NAME : The name of the widget as a Lua string.

= POSITION : The position as a value pair column, row.

Example

1 function d ia log ()
2 for row=1 ,4 do
3 for co l =1 ,4 do
4 local name = "B " . . co l . . " x " . . row
5 i f co l == 3 and row == 2 then name="PRESS" end
6 widgets . Button { name=name, l a b e l =name, co l=col , row=row }
7 end
8 end
9 end

10 function callback_PRESS (c o n t r o l)
11 local col , row = widgets . GetPos i t ion ("PRESS")
12 widgets . Label { name="PRESS" , t e x t ="Ready " , co l=col , row=row }
13 end

Note the returning of two variables. This is a special feature of Lua.

34

3.8. FUNCTIONS DEALING WITH WIDGET ELEMENTS

GetValue
Queries the value of the given widget. The type of the result depends on the
asked widget. It can be a number (SpinCtrl), a boolean (CheckBox), a string
(TextCtrl, Choice, RadioBox) or an array of strings (Table).

VALUE = widgets . GetValue (NAME)

⊗
STRING : The name of the widget.

= VALUE : The value of the widget. The result type depends on the widget.

Example

1 function d ia log ()
2 widgets . Label { name=" MyLabel " , t e x t =" Inpu t a hex number " , co l =1 , row=1 }
3 widgets . T e x t C t r l { name=" MyInput " , co l =2 , row=1 , datatype=HEX_NUMBER}
4 end

5 function apply ()
6 −− pass the i npu t to the send mechanism
7 return widgets . GetValue (" MyInput ")
8 end

IsEnabled
Checks if the given widget is enabled for user inputs or disabled.

RESULT = widgets . IsEnabled (NAME)

⊗
NAME : The name of the widget.

= RESULT : Returns true when the widget is enabled, false otherwise.

Example

1 function d ia log ()
2 widgets . Button { name=" MyButton " , l a b e l =" Toogle i nou t f i e l d " , co l =1 , row=1 }
3 widgets . T e x t C t r l { name=" MyInput " , co l =1 , row=2 , f i l l = true }
4 end

5 function cal lback_MyButton ()
6 widgets . Enable (" MyInput " , widgets . IsEnabled (" MyInput ") == fa lse)
7 end

SetValue
Sets the internal value of the given widget.

widgets . SetValue (NAME, VALUE)

35

CHAPTER 3. LUA DIALOGS

⊗
NAME : The name of the widget.⊗
VALUE : The new value displayed by the given widget.

Example

1 function d ia log ()
2 widgets . Button { name=" MyButton " , l a b e l =" De fau l t value " , co l =1 , row=1 }
3 widgets . Sp inC t r l { name=" MySpinCtr l " , co l =1 , row=2 , f i l l = true }
4 end

5 function cal lback_MyButton ()
6 widgets . SetValue (" MySpinCtr l " , 50)
7 end

SetDialogSize
In some circumstances it may be necessary to set the dimension of the dia-
log explicitly. This function let you specify the width and height of the dialog
independent of internal grid mechanism.

widgets . SetDia logSize { width =400 , he igh t =500 }

⊗
width : The new width of the dialog in pixel.⊗
height : The new height of the dialog in pixel.

Example

1 function d ia log ()
2 widgets . SetDia logSize { width ="600" , he igh t ="400" }
3 widgets . RadioBox { name="MyRadioBox " , co l =1 , row=1 , l a b e l ="Mode" ,
4 o r i e n t a t i o n =" h o r i z o n t a l " ,
5 choices ={ "ENABLED" , "DISABLED" } }
6 widgets . T e x t C t r l { name=" MyTextInput " , co l =1 , row=2 ,
7 datatype=ASCII_STRING , f i l l = true }
8 end

36

4
The editor

The editor integrated into CleverTerm is not only especially
designed for writing Lua code, it also features all kind of qualities
you expect from a good editor like code folding, syntax
highlighting, multi-doc interface, unlimited undo/redo and more.

The editor is invoked when pressing the Edit in the Lua dialog. It pops up ei-
ther with the currently selected dialog script or shows the script in an additional
document tab.

37

CHAPTER 4. THE EDITOR

The latter let you open several scripts at the same time, e.g. to compare parts
of different scripts or copy and paste certain code sections between them.
Script files with unsaved modifications are marked with a little ’∗’ in the tab. You
can close a file by click on the x in its tab. If the file is modified, you will
get a warning. The editor (or the CleverTerm program) will never ends without
informing you about open changes and asking how you will proceed.
If you close the editor by clicking the close symbol in the editor window frame,
the editor is only hidden but all its content is still there. The editor definitely
ends not before the CleverTerm was finished.

4.1 Interactive coding
As an firmly integrated part of the CleverTerm program the editor is intended to
interact with the Lua dialog automatically. In particular to trigger the updating
or redrawing of a dialog when saving the according Lua script. As simple as it
is, it makes the design of new a dialog an amazing experience.
Add a new widget element in your code and press CTRL+S and - voila - the
ready to use widget appears in the dialog as if by magic.
The same is true when you start with a new dialog script. As soon as you save
the Lua script as a new file name, the new dialog appears under this name in
the dialog frame.

4.2 Find

Find dialog

Looking for a certain piece of code or text often depends on other facts. You
want to find only matches for entire words or that the results are equal in upper
and lower case letters. You like to search backwards and wrap around.
The CleverTerm editor provides you with a simple but nevertheless powerful
search functionality. Just click the find icon in the toolbar or press CTRL+F to
start the find dialog.
The dialog keeps your settings during a session.

4.3 Find and replace

Find & replace dialog

It’s the usual business of a programmer to rename a certain variable after re-
thinking the meaning of it. The CleverTerm editor offers you a powerful find and
replace dialog which let you replace a given text step by step as well as in
one go. A step by step approach is especially helpful if you like to check the
replacement first before you want to apply it. Here you can jump from text pas-
sage to text passage and switch the text by your choice.
The dialog supports all settings of the find mechanism and remembers all your
inputs during the program session. This makes it easy to repeat a former re-
placement later.
You can open the find and replace dialog by clicking the according toolbar icon
or press CTRL+H.

38

4.5. EDITOR SHORT KEYS

4.4 Code folding
Code folding is a nice feature when your script consists of a lot of functions or
other code blocks like tables. Activated in the toolbar it collapse every function
into their very first code line. In case of a function, it’s the function definition or
name. Tables collapse into the first line of the table code.
Every folded code block is headed by a + on the left editor margin. You can
fold or unfold only certain functions/blocks or apply the folding to every block in
your script by clicking the icon in the toolbar.

Find and replace with folded code

Folded code is not ’visible’ for the find dialog, but replacing ALL occur-
rences of a given text with another one affects also collapse code lines!

4.5 Editor short keys
The usage of the editor is as simple as possible. All editor functions are acces-
sible from the toolbar or via a right mouse click (selection, copy, paste, ...). A
few short keys are nevertheless worth to remember, since it spares you some
additional mouse clicks.

Short keys
of the most important
functions

Action Short key

Copy the selected text into the clipboard Ctrl + C

Opens the find dialog Ctrl + F

Opens the find and replace dialog Ctrl + H

Toggle the folding of all code blocks Ctrl + L

Create a new script/document Ctrl + N

Load a script file into the editor Ctrl + O

Save the current script/document and trigger a dialog update Ctrl + S

Paste the text in the clipboard at the current cursor position Ctrl + V

Cut the selected text and copy it into the clipboard Ctrl + X

Redo last undo Ctrl + Y

Undo last modification Ctrl + Z

Increase the current editor font (zoom in) Ctrl + +

Decrease the current editor font (zoom out) Ctrl + −

Increase or decrease the editor font via the mousewheel Ctrl+Wheel

39

CHAPTER 4. THE EDITOR

40

A
ASCII character table

ASCII (American Standard Code for Information Interchange) is
a form for the character coding, which, coming from teletype
machines, now is established as the standard code for character
representation.

The first 32 characters of the ASCII code (hex 00 to 1F) are non printable signs,
reserved for control purposes. The main control characters are line feed or car-
riage return. They are used with devices which need the ASCII code for control
purposes as printer or terminals. Their definiton is caused for historic reasons.

Code hex 20 is the blank and hex 7F is a special character which is used for
deleting.

Code ...0 ...1 ...2 ...3 ...4 ...5 ...6 ...7 ...8 ...9 ...A ...B ...C ...D ...E ...F

0... NUL SOH STX ETX EOT ENQ ACK BEK BS HT LF VT FF CR SO SI

1... DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2... SP ! " # $ % & ’ () * + , - . /

3... 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4... @ A B C D E F G H I J K L M N O

5... P Q R S T U V W X Y Z [\] ∧ _

6... ‘ a b c d e f g h i j k l m n o

7... p q r s t u v w x y z { | } ∼ DEL

The upper table regards only 7 bits per byte, the first 128 characters. Extentions
of the ASCII code use the next 128 characters for national language codings or
graphical signs. They are very different in usage. So we will limit the description
to the standard 7 bit version.

41

APPENDIX A. ASCII CHARACTER TABLE

42

	Introduction
	Operating
	Start a communication
	Setup a serial port
	Start and stop the connection

	Send data sequences
	Enter sending data
	Select an EOS
	Line repetition
	Checksums
	Cyclic transmissions
	Send data via individual dialogs

	The data reception window
	The Hexdata View
	The Telegram View

	The device status window
	File transfer
	Save your settings
	Save received data
	Short keys

	Lua dialogs
	How it works
	The dialog framework
	Add widgets elements to your dialog
	Dialog element interaction
	Accessing individual elements by name
	Defining element action handlers

	More positioning and interaction
	Advanced callbacks

	Create a new dialog
	How CleverTerm manages your dialogs

	Supported Dialog elements or widgets
	Named parameters
	Common widget parameters
	Button
	CheckBox
	Choice
	Label
	Line
	RadioBox
	Spacer
	SpinCtrl
	Table
	TextCtrl

	Functions dealing with widget elements
	Enable
	GetPosition
	GetValue
	IsEnabled
	SetValue
	SetDialogSize

	The editor
	Interactive coding
	Find
	Find and replace
	Code folding
	Editor short keys

	ASCII character table

